Folgert Karsdorp, M. V. D. Meulen, T. Meder, Antal van den Bosch
{"title":"故事中的动画检测","authors":"Folgert Karsdorp, M. V. D. Meulen, T. Meder, Antal van den Bosch","doi":"10.4230/OASIcs.CMN.2015.82","DOIUrl":null,"url":null,"abstract":"This paper presents a linguistically uninformed computational model for animacy classification. The model makes use of word n-grams in combination with lower dimensional word embedding representations that are learned from a web-scale corpus. We compare the model to a number of linguistically informed models that use features such as dependency tags and show competitive results. We apply our animacy classifier to a large collection of Dutch folktales to obtain a list of all characters in the stories. We then draw a semantic map of all automatically extracted characters which provides a unique entrance point to the collection.","PeriodicalId":311534,"journal":{"name":"Workshop on Computational Models of Narrative","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Animacy Detection in Stories\",\"authors\":\"Folgert Karsdorp, M. V. D. Meulen, T. Meder, Antal van den Bosch\",\"doi\":\"10.4230/OASIcs.CMN.2015.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a linguistically uninformed computational model for animacy classification. The model makes use of word n-grams in combination with lower dimensional word embedding representations that are learned from a web-scale corpus. We compare the model to a number of linguistically informed models that use features such as dependency tags and show competitive results. We apply our animacy classifier to a large collection of Dutch folktales to obtain a list of all characters in the stories. We then draw a semantic map of all automatically extracted characters which provides a unique entrance point to the collection.\",\"PeriodicalId\":311534,\"journal\":{\"name\":\"Workshop on Computational Models of Narrative\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Computational Models of Narrative\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.CMN.2015.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Models of Narrative","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.CMN.2015.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a linguistically uninformed computational model for animacy classification. The model makes use of word n-grams in combination with lower dimensional word embedding representations that are learned from a web-scale corpus. We compare the model to a number of linguistically informed models that use features such as dependency tags and show competitive results. We apply our animacy classifier to a large collection of Dutch folktales to obtain a list of all characters in the stories. We then draw a semantic map of all automatically extracted characters which provides a unique entrance point to the collection.