RSSD:通过SSD检测器中的注意区域进行对象检测

Shuren Zhou, Jia Qiu
{"title":"RSSD:通过SSD检测器中的注意区域进行对象检测","authors":"Shuren Zhou, Jia Qiu","doi":"10.1109/IICSPI48186.2019.9095895","DOIUrl":null,"url":null,"abstract":"This paper designs a module of attention regions in SSD detector for accurate and efficient object detection (RSSD). Different from previous one-stage detection method like SSD which just simply applied the multi-scale head-features and directly extracted from backbone network, for classification and regression, our method aims to strengthen the characterization of head-features further. The parallel encode-to-decode structure is constructed and a computation method of regional distribution on features (R-Softmax) is proposed. What’s more, in order to reduce time-costs, the down-sampling layers are shared with the multi-scale layers from backbone network. Our detector performs better on PASCAL VOC datasets (e.g., 78.4% mAP V.S. SSD 76.4% on VOC 07test) and costs 0.001s per image more than SSD.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RSSD: Object Detection via Attention Regions in SSD Detector\",\"authors\":\"Shuren Zhou, Jia Qiu\",\"doi\":\"10.1109/IICSPI48186.2019.9095895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper designs a module of attention regions in SSD detector for accurate and efficient object detection (RSSD). Different from previous one-stage detection method like SSD which just simply applied the multi-scale head-features and directly extracted from backbone network, for classification and regression, our method aims to strengthen the characterization of head-features further. The parallel encode-to-decode structure is constructed and a computation method of regional distribution on features (R-Softmax) is proposed. What’s more, in order to reduce time-costs, the down-sampling layers are shared with the multi-scale layers from backbone network. Our detector performs better on PASCAL VOC datasets (e.g., 78.4% mAP V.S. SSD 76.4% on VOC 07test) and costs 0.001s per image more than SSD.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9095895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为实现准确、高效的目标检测,设计了一种SSD检测器关注区域模块。与SSD等以往的单阶段检测方法只是简单地应用多尺度头部特征,直接从骨干网中提取进行分类和回归不同,我们的方法旨在进一步加强头部特征的表征。构造了并行编解码结构,提出了一种特征区域分布的计算方法(R-Softmax)。此外,为了减少时间成本,下采样层与骨干网的多尺度层共享。我们的检测器在PASCAL VOC数据集上表现更好(例如,mAP为78.4%,SSD为76.4%,VOC 07测试),每张图像的成本比SSD高0.001s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RSSD: Object Detection via Attention Regions in SSD Detector
This paper designs a module of attention regions in SSD detector for accurate and efficient object detection (RSSD). Different from previous one-stage detection method like SSD which just simply applied the multi-scale head-features and directly extracted from backbone network, for classification and regression, our method aims to strengthen the characterization of head-features further. The parallel encode-to-decode structure is constructed and a computation method of regional distribution on features (R-Softmax) is proposed. What’s more, in order to reduce time-costs, the down-sampling layers are shared with the multi-scale layers from backbone network. Our detector performs better on PASCAL VOC datasets (e.g., 78.4% mAP V.S. SSD 76.4% on VOC 07test) and costs 0.001s per image more than SSD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Analysis and Design of System of Experimental Consumables Based on Django and QR code Analysis and Research on the Characteristics of Boiled Yolk based on Hyperspectral Remote Sensing Images Density Peaks Spatial Clustering by Grid Neighborhood Search Modeling of Superheated Steam Temperature Characteristics Based on Fireworks Algorithm Optimized Extreme Learning Machine Fusion Chaotic Prediction Model for Bearing Performance by Computer Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1