{"title":"面向实时应用的分布式内存多处理器中的调度流水线通信","authors":"S. Shukla, D. Agrawal","doi":"10.1145/115952.115975","DOIUrl":null,"url":null,"abstract":"This paper investigates communication in distributed memory multiprocessors to support tasklevel parallelism for real-time applications. It is shown that wormhole routing, used in second generation multicomputers, does not support task-level pipelining because its oblivious contention resolution leads to output inconsistency in which a constant throughput is not guaranteed. We propose scheduled routing which guarantees constant throughputs by integrating task specifications with flow-control. In this routing technique, communication processors provide explicit flowcontrol by independently executing switching schedules computed at compile-time. It is deadlock-free, contention-free, does not load the intermediate node memory, and makes use of the multiple equivalent paths between non-adjacent nodes. The resource allocation and scheduling problems resulting from such routing are formulated and related implementation issues are anal yzed. A comparison with wormhole routing for various generalized hyp ercubes and tori shows that scheduled routing is effective in providing a constant throughput when wormhole routing does not and enables pipelining at higher input arrival rates.","PeriodicalId":187095,"journal":{"name":"[1991] Proceedings. The 18th Annual International Symposium on Computer Architecture","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Scheduling pipelined communication in distributed memory multiprocessors for real-time applications\",\"authors\":\"S. Shukla, D. Agrawal\",\"doi\":\"10.1145/115952.115975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates communication in distributed memory multiprocessors to support tasklevel parallelism for real-time applications. It is shown that wormhole routing, used in second generation multicomputers, does not support task-level pipelining because its oblivious contention resolution leads to output inconsistency in which a constant throughput is not guaranteed. We propose scheduled routing which guarantees constant throughputs by integrating task specifications with flow-control. In this routing technique, communication processors provide explicit flowcontrol by independently executing switching schedules computed at compile-time. It is deadlock-free, contention-free, does not load the intermediate node memory, and makes use of the multiple equivalent paths between non-adjacent nodes. The resource allocation and scheduling problems resulting from such routing are formulated and related implementation issues are anal yzed. A comparison with wormhole routing for various generalized hyp ercubes and tori shows that scheduled routing is effective in providing a constant throughput when wormhole routing does not and enables pipelining at higher input arrival rates.\",\"PeriodicalId\":187095,\"journal\":{\"name\":\"[1991] Proceedings. The 18th Annual International Symposium on Computer Architecture\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings. The 18th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/115952.115975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings. The 18th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/115952.115975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scheduling pipelined communication in distributed memory multiprocessors for real-time applications
This paper investigates communication in distributed memory multiprocessors to support tasklevel parallelism for real-time applications. It is shown that wormhole routing, used in second generation multicomputers, does not support task-level pipelining because its oblivious contention resolution leads to output inconsistency in which a constant throughput is not guaranteed. We propose scheduled routing which guarantees constant throughputs by integrating task specifications with flow-control. In this routing technique, communication processors provide explicit flowcontrol by independently executing switching schedules computed at compile-time. It is deadlock-free, contention-free, does not load the intermediate node memory, and makes use of the multiple equivalent paths between non-adjacent nodes. The resource allocation and scheduling problems resulting from such routing are formulated and related implementation issues are anal yzed. A comparison with wormhole routing for various generalized hyp ercubes and tori shows that scheduled routing is effective in providing a constant throughput when wormhole routing does not and enables pipelining at higher input arrival rates.