基于卷积-循环三重网络的住宅电力需求峰值解纠缠表征

Hyung-Jun Moon, Seok-Jun Bu, Sung-Bae Cho
{"title":"基于卷积-循环三重网络的住宅电力需求峰值解纠缠表征","authors":"Hyung-Jun Moon, Seok-Jun Bu, Sung-Bae Cho","doi":"10.1109/ICDMW51313.2020.00110","DOIUrl":null,"url":null,"abstract":"In the time-series models for predicting residential energy consumption, the energy properties collected through multiple sensors usually include irregular and seasonal factors. The irregular pattern resulting from them is called peak demand, which is a major cause of performance degradation. In order to enhance the performance, we propose a convolutional-recurrent triplet network to learn and detect the demand peaks. The proposed model generates the latent space for demand peaks from data, which is transferred into convolutional neural network-long short-term memory (CNN-LSTM) to finally predict the future power demand. Experiments with the dataset of UCI household power consumption composed of a total of 2,075,259 time-series data show that the proposed model reduces the error by 23.63% and outperforms the state-of-the-art deep learning models including the CNN-LSTM. Especially, the proposed model improves the prediction performance by modeling the distribution of demand peaks in Euclidean space.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Disentangled Representation of Residential Power Demand Peak via Convolutional-Recurrent Triplet Network\",\"authors\":\"Hyung-Jun Moon, Seok-Jun Bu, Sung-Bae Cho\",\"doi\":\"10.1109/ICDMW51313.2020.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the time-series models for predicting residential energy consumption, the energy properties collected through multiple sensors usually include irregular and seasonal factors. The irregular pattern resulting from them is called peak demand, which is a major cause of performance degradation. In order to enhance the performance, we propose a convolutional-recurrent triplet network to learn and detect the demand peaks. The proposed model generates the latent space for demand peaks from data, which is transferred into convolutional neural network-long short-term memory (CNN-LSTM) to finally predict the future power demand. Experiments with the dataset of UCI household power consumption composed of a total of 2,075,259 time-series data show that the proposed model reduces the error by 23.63% and outperforms the state-of-the-art deep learning models including the CNN-LSTM. Especially, the proposed model improves the prediction performance by modeling the distribution of demand peaks in Euclidean space.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在住宅能耗预测的时间序列模型中,通过多个传感器采集的能源特性通常包含不规则和季节性因素。由此产生的不规则模式称为峰值需求,这是导致性能下降的主要原因。为了提高性能,我们提出了一种卷积-循环三重网络来学习和检测需求峰值。该模型从数据中生成需求峰值的潜在空间,并将其传递到卷积神经网络长短期记忆(CNN-LSTM)中,最终预测未来的电力需求。在包含2,075,259个时间序列数据的UCI家庭用电数据集上进行的实验表明,该模型的误差降低了23.63%,优于CNN-LSTM等最先进的深度学习模型。该模型通过对需求峰在欧氏空间中的分布进行建模,提高了预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Disentangled Representation of Residential Power Demand Peak via Convolutional-Recurrent Triplet Network
In the time-series models for predicting residential energy consumption, the energy properties collected through multiple sensors usually include irregular and seasonal factors. The irregular pattern resulting from them is called peak demand, which is a major cause of performance degradation. In order to enhance the performance, we propose a convolutional-recurrent triplet network to learn and detect the demand peaks. The proposed model generates the latent space for demand peaks from data, which is transferred into convolutional neural network-long short-term memory (CNN-LSTM) to finally predict the future power demand. Experiments with the dataset of UCI household power consumption composed of a total of 2,075,259 time-series data show that the proposed model reduces the error by 23.63% and outperforms the state-of-the-art deep learning models including the CNN-LSTM. Especially, the proposed model improves the prediction performance by modeling the distribution of demand peaks in Euclidean space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1