基于GP-CNN网络的物联网主动攻击信号调制分类

Kejia Ji, Shuo Chang, Sai Huang, Hao Chen, Shao Jia, Hua Lu
{"title":"基于GP-CNN网络的物联网主动攻击信号调制分类","authors":"Kejia Ji, Shuo Chang, Sai Huang, Hao Chen, Shao Jia, Hua Lu","doi":"10.1109/ICCWorkshops50388.2021.9473800","DOIUrl":null,"url":null,"abstract":"The traditional modulation classification method is difficult to cope with the changing wireless electromagnetic environment and the complex signal model. On this basis, this paper proposes a data-driven automatic modulation classification (AMC) method using a global pooling-based convolutional neural network (GP-CNN). Stepping convolution is used to replace the pooling layer to avoid loss of signal details and global pooling (GP) is utilized to replace the fully-connected for a lower computational complexity. Simulations verify the superiority of the proposed method, which outperforms other deep neural network methods and approaches the optimal bound of the maximum likelihood method. Moreover, the influence of the network parameters on performance is also explored.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"577 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modulation Classification of Active Attack Signals for Internet of Things Using GP-CNN Network\",\"authors\":\"Kejia Ji, Shuo Chang, Sai Huang, Hao Chen, Shao Jia, Hua Lu\",\"doi\":\"10.1109/ICCWorkshops50388.2021.9473800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional modulation classification method is difficult to cope with the changing wireless electromagnetic environment and the complex signal model. On this basis, this paper proposes a data-driven automatic modulation classification (AMC) method using a global pooling-based convolutional neural network (GP-CNN). Stepping convolution is used to replace the pooling layer to avoid loss of signal details and global pooling (GP) is utilized to replace the fully-connected for a lower computational complexity. Simulations verify the superiority of the proposed method, which outperforms other deep neural network methods and approaches the optimal bound of the maximum likelihood method. Moreover, the influence of the network parameters on performance is also explored.\",\"PeriodicalId\":127186,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"577 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWorkshops50388.2021.9473800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的调制分类方法难以适应不断变化的无线电磁环境和复杂的信号模型。在此基础上,提出了一种基于全局池化的卷积神经网络(GP-CNN)的数据驱动的自动调制分类(AMC)方法。采用步进卷积代替池化层以避免信号细节丢失,采用全局池化代替全连接层以降低计算复杂度。仿真结果验证了该方法的优越性,该方法优于其他深度神经网络方法,并逼近最大似然方法的最优界。此外,还探讨了网络参数对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation Classification of Active Attack Signals for Internet of Things Using GP-CNN Network
The traditional modulation classification method is difficult to cope with the changing wireless electromagnetic environment and the complex signal model. On this basis, this paper proposes a data-driven automatic modulation classification (AMC) method using a global pooling-based convolutional neural network (GP-CNN). Stepping convolution is used to replace the pooling layer to avoid loss of signal details and global pooling (GP) is utilized to replace the fully-connected for a lower computational complexity. Simulations verify the superiority of the proposed method, which outperforms other deep neural network methods and approaches the optimal bound of the maximum likelihood method. Moreover, the influence of the network parameters on performance is also explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BML: An Efficient and Versatile Tool for BGP Dataset Collection Efficient and Privacy-Preserving Contact Tracing System for Covid-19 using Blockchain MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements Distributed Multi-Agent Learning for Service Function Chain Partial Offloading at the Edge A Deep Neural Network Based Environment Sensing in the Presence of Jammers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1