一种新的高机动目标自适应滤波器

Gaoru Xue, Yan Liang, Wenchao Zhan, Yanan Yong, Ping Qiao
{"title":"一种新的高机动目标自适应滤波器","authors":"Gaoru Xue, Yan Liang, Wenchao Zhan, Yanan Yong, Ping Qiao","doi":"10.1109/RADAR.2016.8059261","DOIUrl":null,"url":null,"abstract":"This paper considers the highly maneuvering target tracking as a discrete-time stochastic system with generalized unknown disturbance input, which can represent an arbitrary linear combination of dynamic, random, and deterministic disturbance inputs. The proposed filter based on upper bound filter (UBF) can adaptively optimize adjust factor to find the globally optimal solution of covariance matrices of the state predictions, innovation and estimates. To reduce the linearization error, a iterative optimization frame is designed. The experiment on \"S maneuver\" of anti-ship missile shows that the proposed filter can significantly reduce the peak estimation errors due to maneuvers.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel adaptive filter for highly maneuvering target\",\"authors\":\"Gaoru Xue, Yan Liang, Wenchao Zhan, Yanan Yong, Ping Qiao\",\"doi\":\"10.1109/RADAR.2016.8059261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the highly maneuvering target tracking as a discrete-time stochastic system with generalized unknown disturbance input, which can represent an arbitrary linear combination of dynamic, random, and deterministic disturbance inputs. The proposed filter based on upper bound filter (UBF) can adaptively optimize adjust factor to find the globally optimal solution of covariance matrices of the state predictions, innovation and estimates. To reduce the linearization error, a iterative optimization frame is designed. The experiment on \\\"S maneuver\\\" of anti-ship missile shows that the proposed filter can significantly reduce the peak estimation errors due to maneuvers.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将高机动目标跟踪视为具有广义未知干扰输入的离散随机系统,它可以表示动态、随机和确定性干扰输入的任意线性组合。提出的基于上界滤波器(UBF)的滤波器可以自适应优化调整因子,从而找到状态预测、创新和估计的协方差矩阵的全局最优解。为了减小线性化误差,设计了迭代优化框架。对反舰导弹S型机动的实验表明,该滤波器能显著降低机动引起的峰值估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel adaptive filter for highly maneuvering target
This paper considers the highly maneuvering target tracking as a discrete-time stochastic system with generalized unknown disturbance input, which can represent an arbitrary linear combination of dynamic, random, and deterministic disturbance inputs. The proposed filter based on upper bound filter (UBF) can adaptively optimize adjust factor to find the globally optimal solution of covariance matrices of the state predictions, innovation and estimates. To reduce the linearization error, a iterative optimization frame is designed. The experiment on "S maneuver" of anti-ship missile shows that the proposed filter can significantly reduce the peak estimation errors due to maneuvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refined SAR image segmentation algorithm based on K-means clustering Extended PGA processing of high resolution airborne SAR imagery reconstructed via backprojection algorithm Design of Ka-band practical waveguide duplexer Adaptive structured detector and performance assessment in training-limited cases Vivaldi antenna for railway cutting monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1