{"title":"利用角点特征对应对词图像进行相似度排序","authors":"Jamie L. Rothfeder, Shaolei Feng, T. Rath","doi":"10.1109/CVPRW.2003.10021","DOIUrl":null,"url":null,"abstract":"Libraries contain enormous amounts of handwritten historical documents which cannot be made available on-line because they do not have a searchable index. The wordspotting idea has previously been proposed as a solution to creating indexes for such documents and collections by matching word images. In this paper we present an algorithm which compares whole word-images based on their appearance. This algorithm recovers correspondences of points of interest in two images, and then uses these correspondences to construct a similarity measure. This similarity measure can then be used to rank word-images in order of their closeness to a querying image. We achieved an average precision of 62.57% on a set of 2372 images of reasonable quality and an average precision of 15.49% on a set of 3262 images from documents of poor quality that are even hard to read for humans.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"Using Corner Feature Correspondences to Rank Word Images by Similarity\",\"authors\":\"Jamie L. Rothfeder, Shaolei Feng, T. Rath\",\"doi\":\"10.1109/CVPRW.2003.10021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Libraries contain enormous amounts of handwritten historical documents which cannot be made available on-line because they do not have a searchable index. The wordspotting idea has previously been proposed as a solution to creating indexes for such documents and collections by matching word images. In this paper we present an algorithm which compares whole word-images based on their appearance. This algorithm recovers correspondences of points of interest in two images, and then uses these correspondences to construct a similarity measure. This similarity measure can then be used to rank word-images in order of their closeness to a querying image. We achieved an average precision of 62.57% on a set of 2372 images of reasonable quality and an average precision of 15.49% on a set of 3262 images from documents of poor quality that are even hard to read for humans.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"369 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2003.10021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Corner Feature Correspondences to Rank Word Images by Similarity
Libraries contain enormous amounts of handwritten historical documents which cannot be made available on-line because they do not have a searchable index. The wordspotting idea has previously been proposed as a solution to creating indexes for such documents and collections by matching word images. In this paper we present an algorithm which compares whole word-images based on their appearance. This algorithm recovers correspondences of points of interest in two images, and then uses these correspondences to construct a similarity measure. This similarity measure can then be used to rank word-images in order of their closeness to a querying image. We achieved an average precision of 62.57% on a set of 2372 images of reasonable quality and an average precision of 15.49% on a set of 3262 images from documents of poor quality that are even hard to read for humans.