高温下氮化铝兰姆波谐振器的热补偿

Chih-Ming Lin, Ting-ta Yen, V. Felmetsger, M. Hopcroft, J. Kuypers, A. Pisano
{"title":"高温下氮化铝兰姆波谐振器的热补偿","authors":"Chih-Ming Lin, Ting-ta Yen, V. Felmetsger, M. Hopcroft, J. Kuypers, A. Pisano","doi":"10.1109/FREQ.2010.5556381","DOIUrl":null,"url":null,"abstract":"Thermal compensation for aluminum nitride (AlN) Lamb wave resonators operating at high temperature is experimentally demonstrated in this study. By adding a compensating layer of silicon dioxide (SiO<inf>2</inf>), the turnover temperature can be designed for high temperature operation by varying the normalized AlN thickness (h<inf>AlN</inf>/λ) and the normalized SiO2 thickness (h<inf>SiO2</inf>/λ) in the AlN/SiO<inf>2</inf> composite stack. With different designs of h<inf>AlN</inf>/λ and h<inf>SiO2</inf>/λ, the Lamb wave resonators were well temperature-compensated at 214°C, 430°C, and 542°C, respectively. Furthermore, several testing cycles in the full temperature range from 25°C to 700°C were taken to demonstrate the repeatability of the frequency characteristics. This thermal compensation technology is promising for future applications to piezoelectric resonators, filters, and sensors at high temperature.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Thermal compensation for aluminum nitride Lamb wave resonators operating at high temperature\",\"authors\":\"Chih-Ming Lin, Ting-ta Yen, V. Felmetsger, M. Hopcroft, J. Kuypers, A. Pisano\",\"doi\":\"10.1109/FREQ.2010.5556381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal compensation for aluminum nitride (AlN) Lamb wave resonators operating at high temperature is experimentally demonstrated in this study. By adding a compensating layer of silicon dioxide (SiO<inf>2</inf>), the turnover temperature can be designed for high temperature operation by varying the normalized AlN thickness (h<inf>AlN</inf>/λ) and the normalized SiO2 thickness (h<inf>SiO2</inf>/λ) in the AlN/SiO<inf>2</inf> composite stack. With different designs of h<inf>AlN</inf>/λ and h<inf>SiO2</inf>/λ, the Lamb wave resonators were well temperature-compensated at 214°C, 430°C, and 542°C, respectively. Furthermore, several testing cycles in the full temperature range from 25°C to 700°C were taken to demonstrate the repeatability of the frequency characteristics. This thermal compensation technology is promising for future applications to piezoelectric resonators, filters, and sensors at high temperature.\",\"PeriodicalId\":344989,\"journal\":{\"name\":\"2010 IEEE International Frequency Control Symposium\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Frequency Control Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2010.5556381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2010.5556381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

实验证明了氮化铝(AlN)兰姆波谐振器在高温下的热补偿。通过添加二氧化硅(SiO2)补偿层,通过改变AlN/SiO2复合材料堆中AlN的归一化厚度(hAlN/λ)和SiO2的归一化厚度(hSiO2/λ),可以设计出适合高温运行的翻转温度。采用不同的hAlN/λ和hSiO2/λ设计,分别在214°C、430°C和542°C下对Lamb波谐振器进行了良好的温度补偿。此外,在25°C至700°C的全温度范围内进行了几个测试循环,以证明频率特性的可重复性。这种热补偿技术在未来的高温下有望应用于压电谐振器、滤波器和传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal compensation for aluminum nitride Lamb wave resonators operating at high temperature
Thermal compensation for aluminum nitride (AlN) Lamb wave resonators operating at high temperature is experimentally demonstrated in this study. By adding a compensating layer of silicon dioxide (SiO2), the turnover temperature can be designed for high temperature operation by varying the normalized AlN thickness (hAlN/λ) and the normalized SiO2 thickness (hSiO2/λ) in the AlN/SiO2 composite stack. With different designs of hAlN/λ and hSiO2/λ, the Lamb wave resonators were well temperature-compensated at 214°C, 430°C, and 542°C, respectively. Furthermore, several testing cycles in the full temperature range from 25°C to 700°C were taken to demonstrate the repeatability of the frequency characteristics. This thermal compensation technology is promising for future applications to piezoelectric resonators, filters, and sensors at high temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blackbody radiation shifts and magic wavelengths for atomic clock research Multiplexed optical link for ultra-stable frequency dissemination Frequency stability and phase noise of an improved X-band cryocooled sapphire oscillator Frequency shifts of colliding fermions in optical lattice clocks Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1