{"title":"使用实时日志流分析识别网络威胁","authors":"Mukesh Yadav, Dhirendra S. Mishra","doi":"10.1109/PCEMS58491.2023.10136070","DOIUrl":null,"url":null,"abstract":"The field of information security has covered various sectors in order to secure data which is stored online, offline, and during transmission over the network. The standard process of system log analysis is to first parse unstructured logs into structured data, and then apply data mining and machine learning techniques to analyze the data and build a threat detection model. This paper proposes a novel idea for identifying the network threat in an organisation. We take live network device logs in different log formats as input and send them for analysis. Whether a live log contains an anomaly, any vulnerability, or any insider threat will be identified. To find suspicious activity in the network, the logs will be processed, and find any activity at the same time.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of network threats using live log stream analysis\",\"authors\":\"Mukesh Yadav, Dhirendra S. Mishra\",\"doi\":\"10.1109/PCEMS58491.2023.10136070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of information security has covered various sectors in order to secure data which is stored online, offline, and during transmission over the network. The standard process of system log analysis is to first parse unstructured logs into structured data, and then apply data mining and machine learning techniques to analyze the data and build a threat detection model. This paper proposes a novel idea for identifying the network threat in an organisation. We take live network device logs in different log formats as input and send them for analysis. Whether a live log contains an anomaly, any vulnerability, or any insider threat will be identified. To find suspicious activity in the network, the logs will be processed, and find any activity at the same time.\",\"PeriodicalId\":330870,\"journal\":{\"name\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCEMS58491.2023.10136070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息安全领域已经涵盖了各个领域,以确保在线、离线和在网络上传输的数据的安全。系统日志分析的标准流程是首先将非结构化日志解析为结构化数据,然后应用数据挖掘和机器学习技术对数据进行分析,建立威胁检测模型。本文提出了一种识别组织中网络威胁的新思路。我们将不同日志格式的实时网络设备日志作为输入,并发送它们进行分析。活动日志是否包含异常、任何漏洞或任何内部威胁将被识别。为了发现网络中的可疑活动,将对日志进行处理,并同时发现任何活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of network threats using live log stream analysis
The field of information security has covered various sectors in order to secure data which is stored online, offline, and during transmission over the network. The standard process of system log analysis is to first parse unstructured logs into structured data, and then apply data mining and machine learning techniques to analyze the data and build a threat detection model. This paper proposes a novel idea for identifying the network threat in an organisation. We take live network device logs in different log formats as input and send them for analysis. Whether a live log contains an anomaly, any vulnerability, or any insider threat will be identified. To find suspicious activity in the network, the logs will be processed, and find any activity at the same time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1