基于数值模拟技术的超高压混凝土结构极限响应预测

M. Pokhrel, M. Bandelt
{"title":"基于数值模拟技术的超高压混凝土结构极限响应预测","authors":"M. Pokhrel, M. Bandelt","doi":"10.21838/uhpc.9691","DOIUrl":null,"url":null,"abstract":"Ultra-high performance concrete (UHPC) is being considered as an alternative ductile material to be used in the expected plastic hinge regions of structural components in buildings and bridges. Although several experimental studies of reinforced UHPC structural elements have been conducted for proof-of-concept seismic application, quantification of the plastic hinge length and associated rotation at ultimate limit states remains the most significant aspect for the ductile design of UHPC components in new structures. To that end, this study utilizes two-dimensional finite element models incorporating recently developed bond-slip constitutive model, which aids in simulating multiple damage states, such as yielding of reinforcement and reinforcement fracture. Several finite element models with variations in geometrical properties and loading scheme were simulated to compute the equivalent plastic hinge length values for reinforced UHPC flexural members. The existing empirical equations available for reinforced concrete and reinforced highperformance fiber-reinforced cementitious composite (HPFRCC) were found to over-predict the equivalent plastic hinge length in reinforced UHPC members. In addition, a mechanics-based approach was used to estimate the ultimate rotation capacity utilizing the plastic hinge length values obtained from numerical simulation techniques. This study can be used as starting point to develop a more robust empirical expression of plastic hinge length for reinforced UHPC flexural members and formulate a simplified approach to compute non-linear modeling parameters for displacement-based seismic design of UHPC structural components.","PeriodicalId":170570,"journal":{"name":"Second International Interactive Symposium on UHPC","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting UHPC Structural Response at Ultimate Limit State through Numerical Simulation Technique\",\"authors\":\"M. Pokhrel, M. Bandelt\",\"doi\":\"10.21838/uhpc.9691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-high performance concrete (UHPC) is being considered as an alternative ductile material to be used in the expected plastic hinge regions of structural components in buildings and bridges. Although several experimental studies of reinforced UHPC structural elements have been conducted for proof-of-concept seismic application, quantification of the plastic hinge length and associated rotation at ultimate limit states remains the most significant aspect for the ductile design of UHPC components in new structures. To that end, this study utilizes two-dimensional finite element models incorporating recently developed bond-slip constitutive model, which aids in simulating multiple damage states, such as yielding of reinforcement and reinforcement fracture. Several finite element models with variations in geometrical properties and loading scheme were simulated to compute the equivalent plastic hinge length values for reinforced UHPC flexural members. The existing empirical equations available for reinforced concrete and reinforced highperformance fiber-reinforced cementitious composite (HPFRCC) were found to over-predict the equivalent plastic hinge length in reinforced UHPC members. In addition, a mechanics-based approach was used to estimate the ultimate rotation capacity utilizing the plastic hinge length values obtained from numerical simulation techniques. This study can be used as starting point to develop a more robust empirical expression of plastic hinge length for reinforced UHPC flexural members and formulate a simplified approach to compute non-linear modeling parameters for displacement-based seismic design of UHPC structural components.\",\"PeriodicalId\":170570,\"journal\":{\"name\":\"Second International Interactive Symposium on UHPC\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International Interactive Symposium on UHPC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21838/uhpc.9691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Interactive Symposium on UHPC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21838/uhpc.9691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超高性能混凝土(UHPC)被认为是一种可替代的延性材料,用于建筑和桥梁结构部件的预期塑性铰区域。尽管已经进行了几项增强UHPC结构构件的试验研究,以验证概念地震应用,但在极限状态下,塑性铰长度和相关旋转的量化仍然是新结构中UHPC构件延性设计的最重要方面。为此,本研究采用二维有限元模型,结合最近发展的粘结-滑移本构模型,有助于模拟多种损伤状态,如钢筋屈服和钢筋断裂。对几种不同几何特性和加载方式的有限元模型进行了模拟,计算了钢筋UHPC受弯构件的等效塑性铰长度值。研究发现,现有的钢筋混凝土和增强高性能纤维增强胶凝复合材料(HPFRCC)经验方程对增强UHPC构件等效塑性铰长度的预测过高。此外,采用基于力学的方法,利用数值模拟技术获得的塑性铰长度值来估计极限旋转能力。本研究可作为一个起点,为增强UHPC受弯构件塑性铰长度的鲁棒性经验表达式,并为UHPC结构构件基于位移的抗震设计提供一种非线性建模参数的简化计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting UHPC Structural Response at Ultimate Limit State through Numerical Simulation Technique
Ultra-high performance concrete (UHPC) is being considered as an alternative ductile material to be used in the expected plastic hinge regions of structural components in buildings and bridges. Although several experimental studies of reinforced UHPC structural elements have been conducted for proof-of-concept seismic application, quantification of the plastic hinge length and associated rotation at ultimate limit states remains the most significant aspect for the ductile design of UHPC components in new structures. To that end, this study utilizes two-dimensional finite element models incorporating recently developed bond-slip constitutive model, which aids in simulating multiple damage states, such as yielding of reinforcement and reinforcement fracture. Several finite element models with variations in geometrical properties and loading scheme were simulated to compute the equivalent plastic hinge length values for reinforced UHPC flexural members. The existing empirical equations available for reinforced concrete and reinforced highperformance fiber-reinforced cementitious composite (HPFRCC) were found to over-predict the equivalent plastic hinge length in reinforced UHPC members. In addition, a mechanics-based approach was used to estimate the ultimate rotation capacity utilizing the plastic hinge length values obtained from numerical simulation techniques. This study can be used as starting point to develop a more robust empirical expression of plastic hinge length for reinforced UHPC flexural members and formulate a simplified approach to compute non-linear modeling parameters for displacement-based seismic design of UHPC structural components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Connection Details to Connect Precast Cap Beams to Precast Columns Using Ultra High Performance Concrete (UHPC) For Seismic and Non-Seismic Regions Acceptance Criteria for Composite UHPC Panel Systems to Show Compliance with the Building Codes in the USA UHPC Facades — The New Use For The New Material The Next Generation of UHPC Caltrans Implementation of UHPC Connections for ABC Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1