上下文事实排序及其在表合成和压缩中的应用

Silu Huang, Jialu Liu, Flip Korn, Xuezhi Wang, You Wu, Dale Markowitz, Cong Yu
{"title":"上下文事实排序及其在表合成和压缩中的应用","authors":"Silu Huang, Jialu Liu, Flip Korn, Xuezhi Wang, You Wu, Dale Markowitz, Cong Yu","doi":"10.1145/3292500.3330980","DOIUrl":null,"url":null,"abstract":"Modern search engines increasingly incorporate tabular content, which consists of a set of entities each augmented with a small set of facts. The facts can be obtained from multiple sources: an entity's knowledge base entry, the infobox on its Wikipedia page, or its row within a WebTable. Crucially, the informativeness of a fact depends not only on the entity but also the specific context(e.g., the query).To the best of our knowledge, this paper is the first to study the problem of contextual fact ranking: given some entities and a context (i.e., succinct natural language description), identify the most informative facts for the entities collectively within the context.We propose to contextually rank the facts by exploiting deep learning techniques. In particular, we develop pointwise and pair-wise ranking models, using textual and statistical information for the given entities and context derived from their sources. We enhance the models by incorporating entity type information from an IsA (hypernym) database. We demonstrate that our approaches achieve better performance than state-of-the-art baselines in terms of MAP, NDCG, and recall. We further conduct user studies for two specific applications of contextual fact ranking-table synthesis and table compression-and show that our models can identify more informative facts than the baselines.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Contextual Fact Ranking and Its Applications in Table Synthesis and Compression\",\"authors\":\"Silu Huang, Jialu Liu, Flip Korn, Xuezhi Wang, You Wu, Dale Markowitz, Cong Yu\",\"doi\":\"10.1145/3292500.3330980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern search engines increasingly incorporate tabular content, which consists of a set of entities each augmented with a small set of facts. The facts can be obtained from multiple sources: an entity's knowledge base entry, the infobox on its Wikipedia page, or its row within a WebTable. Crucially, the informativeness of a fact depends not only on the entity but also the specific context(e.g., the query).To the best of our knowledge, this paper is the first to study the problem of contextual fact ranking: given some entities and a context (i.e., succinct natural language description), identify the most informative facts for the entities collectively within the context.We propose to contextually rank the facts by exploiting deep learning techniques. In particular, we develop pointwise and pair-wise ranking models, using textual and statistical information for the given entities and context derived from their sources. We enhance the models by incorporating entity type information from an IsA (hypernym) database. We demonstrate that our approaches achieve better performance than state-of-the-art baselines in terms of MAP, NDCG, and recall. We further conduct user studies for two specific applications of contextual fact ranking-table synthesis and table compression-and show that our models can identify more informative facts than the baselines.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

现代搜索引擎越来越多地结合表格内容,表格内容由一组实体组成,每个实体都有一小部分事实。事实可以从多个来源获得:实体的知识库条目、其Wikipedia页面上的信息框或其在WebTable中的行。至关重要的是,事实的信息量不仅取决于实体,还取决于特定的背景。查询)。据我们所知,本文是第一个研究上下文事实排序问题的论文:给定一些实体和一个上下文(即简洁的自然语言描述),在上下文中为实体集体识别最具信息量的事实。我们建议利用深度学习技术对事实进行上下文排序。特别是,我们开发了点和成对排序模型,使用来自其来源的给定实体和上下文的文本和统计信息。我们通过合并来自IsA(缩略词)数据库的实体类型信息来增强模型。我们证明了我们的方法在MAP、NDCG和召回方面比最先进的基线实现了更好的性能。我们进一步对上下文事实排名表合成和表压缩的两个特定应用程序进行了用户研究,并表明我们的模型可以识别比基线更多的信息事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contextual Fact Ranking and Its Applications in Table Synthesis and Compression
Modern search engines increasingly incorporate tabular content, which consists of a set of entities each augmented with a small set of facts. The facts can be obtained from multiple sources: an entity's knowledge base entry, the infobox on its Wikipedia page, or its row within a WebTable. Crucially, the informativeness of a fact depends not only on the entity but also the specific context(e.g., the query).To the best of our knowledge, this paper is the first to study the problem of contextual fact ranking: given some entities and a context (i.e., succinct natural language description), identify the most informative facts for the entities collectively within the context.We propose to contextually rank the facts by exploiting deep learning techniques. In particular, we develop pointwise and pair-wise ranking models, using textual and statistical information for the given entities and context derived from their sources. We enhance the models by incorporating entity type information from an IsA (hypernym) database. We demonstrate that our approaches achieve better performance than state-of-the-art baselines in terms of MAP, NDCG, and recall. We further conduct user studies for two specific applications of contextual fact ranking-table synthesis and table compression-and show that our models can identify more informative facts than the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1