Siriana Paonessa, Walter Picariello, L. Bocciolini, C. Zappacosta, S. Pascoli, B. Tellini, M. Macucci
{"title":"根据EN 50121-3-1标准分析轨道车辆的电磁发射:一个案例研究","authors":"Siriana Paonessa, Walter Picariello, L. Bocciolini, C. Zappacosta, S. Pascoli, B. Tellini, M. Macucci","doi":"10.1109/EMCEUROPE48519.2020.9245630","DOIUrl":null,"url":null,"abstract":"We present a case study on the evaluation of the radiated emission from a railway vehicle according to the EN 50121 standard. Measurements were performed in an open-area test site in two conditions: stationary mode and slow-moving mode, according to the technical document EN 50121-3-1:2018. Magnetic and electric field strengths were measured and compared with limit curves. The considered frequency range is from 150 kHz to 1 GHz. We exploit a time-domain analysis implemented with an EMI receiver, instead of a conventional swept frequency analysis, in order to reduce ambient noise variation, according to CISPR 16-1-1. The usage of a hybrid antenna is proposed to reduce the time needed to cover the 30 MHz to 1 GHz frequency range. We discuss the difficulties resulting from the contribution of external sources, which could be suppressed by performing the measurements in a suitable semi-anechoic chamber, such as the one available at the Laboratories of the Italian Railway Infrastructure Manager (RFI) Osmannoro location. We provide evidence that emission measurements performed in such semi-anechoic chamber yield results in agreement with those obtained in an open-area site.","PeriodicalId":332251,"journal":{"name":"2020 International Symposium on Electromagnetic Compatibility - EMC EUROPE","volume":"22 6S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the electromagnetic emission of a railway vehicle according to the EN 50121-3-1 standard: a case study\",\"authors\":\"Siriana Paonessa, Walter Picariello, L. Bocciolini, C. Zappacosta, S. Pascoli, B. Tellini, M. Macucci\",\"doi\":\"10.1109/EMCEUROPE48519.2020.9245630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a case study on the evaluation of the radiated emission from a railway vehicle according to the EN 50121 standard. Measurements were performed in an open-area test site in two conditions: stationary mode and slow-moving mode, according to the technical document EN 50121-3-1:2018. Magnetic and electric field strengths were measured and compared with limit curves. The considered frequency range is from 150 kHz to 1 GHz. We exploit a time-domain analysis implemented with an EMI receiver, instead of a conventional swept frequency analysis, in order to reduce ambient noise variation, according to CISPR 16-1-1. The usage of a hybrid antenna is proposed to reduce the time needed to cover the 30 MHz to 1 GHz frequency range. We discuss the difficulties resulting from the contribution of external sources, which could be suppressed by performing the measurements in a suitable semi-anechoic chamber, such as the one available at the Laboratories of the Italian Railway Infrastructure Manager (RFI) Osmannoro location. We provide evidence that emission measurements performed in such semi-anechoic chamber yield results in agreement with those obtained in an open-area site.\",\"PeriodicalId\":332251,\"journal\":{\"name\":\"2020 International Symposium on Electromagnetic Compatibility - EMC EUROPE\",\"volume\":\"22 6S 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Electromagnetic Compatibility - EMC EUROPE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCEUROPE48519.2020.9245630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Electromagnetic Compatibility - EMC EUROPE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEUROPE48519.2020.9245630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the electromagnetic emission of a railway vehicle according to the EN 50121-3-1 standard: a case study
We present a case study on the evaluation of the radiated emission from a railway vehicle according to the EN 50121 standard. Measurements were performed in an open-area test site in two conditions: stationary mode and slow-moving mode, according to the technical document EN 50121-3-1:2018. Magnetic and electric field strengths were measured and compared with limit curves. The considered frequency range is from 150 kHz to 1 GHz. We exploit a time-domain analysis implemented with an EMI receiver, instead of a conventional swept frequency analysis, in order to reduce ambient noise variation, according to CISPR 16-1-1. The usage of a hybrid antenna is proposed to reduce the time needed to cover the 30 MHz to 1 GHz frequency range. We discuss the difficulties resulting from the contribution of external sources, which could be suppressed by performing the measurements in a suitable semi-anechoic chamber, such as the one available at the Laboratories of the Italian Railway Infrastructure Manager (RFI) Osmannoro location. We provide evidence that emission measurements performed in such semi-anechoic chamber yield results in agreement with those obtained in an open-area site.