基于神经网络的彩色图像分割工具

D. Goldman, Ming Yang, N. Bourbakis
{"title":"基于神经网络的彩色图像分割工具","authors":"D. Goldman, Ming Yang, N. Bourbakis","doi":"10.1109/TAI.2002.1180845","DOIUrl":null,"url":null,"abstract":"The paper focuses on the development of an efficient and accurate tool for segmenting color images. The segmentation is a problem that has been widely studied since machine vision first evolved as a research area. The neural network segmentation tools and technology developed and presented in this paper show great potential in application where the accuracy is the major factor. Similar requirements exist in the area of medical imaging where segmentation must provide the highest possible precision. The feasibility of the work presented shows a promising future by using a cluster-based approach to training very large feedforward neural networks.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A neural network-based segmentation tool for color images\",\"authors\":\"D. Goldman, Ming Yang, N. Bourbakis\",\"doi\":\"10.1109/TAI.2002.1180845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on the development of an efficient and accurate tool for segmenting color images. The segmentation is a problem that has been widely studied since machine vision first evolved as a research area. The neural network segmentation tools and technology developed and presented in this paper show great potential in application where the accuracy is the major factor. Similar requirements exist in the area of medical imaging where segmentation must provide the highest possible precision. The feasibility of the work presented shows a promising future by using a cluster-based approach to training very large feedforward neural networks.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的重点是开发一种高效、准确的彩色图像分割工具。自机器视觉作为一个研究领域发展起来以来,分割问题就得到了广泛的研究。本文所开发的神经网络分割工具和技术在以精度为主要因素的情况下具有很大的应用潜力。类似的要求也存在于医学成像领域,其中分割必须提供尽可能高的精度。本文所提出的可行性表明,使用基于聚类的方法来训练超大型前馈神经网络具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural network-based segmentation tool for color images
The paper focuses on the development of an efficient and accurate tool for segmenting color images. The segmentation is a problem that has been widely studied since machine vision first evolved as a research area. The neural network segmentation tools and technology developed and presented in this paper show great potential in application where the accuracy is the major factor. Similar requirements exist in the area of medical imaging where segmentation must provide the highest possible precision. The feasibility of the work presented shows a promising future by using a cluster-based approach to training very large feedforward neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1