基于卷积神经网络的变形不变非接触掌纹识别

Amin Jalali, R. Mallipeddi, Minho Lee
{"title":"基于卷积神经网络的变形不变非接触掌纹识别","authors":"Amin Jalali, R. Mallipeddi, Minho Lee","doi":"10.1145/2814940.2814977","DOIUrl":null,"url":null,"abstract":"Palmprint recognition is a challenging problem, mainly due to low quality of the patterns, variation in focal lens distance, large nonlinear deformations caused by contactless image acquisition system, and computational complexity for the large image size of typical palmprints. This paper proposes a new contactless biometric system using features of palm texture extracted from the single hand image acquired from a digital camera. In this work, we propose to apply convolutional neural network (CNN) for palmprint recognition. The results demonstrate that the extracted local and general features using CNN are invariant to image rotation, translation, and scale variations.","PeriodicalId":427567,"journal":{"name":"Proceedings of the 3rd International Conference on Human-Agent Interaction","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Deformation Invariant and Contactless Palmprint Recognition Using Convolutional Neural Network\",\"authors\":\"Amin Jalali, R. Mallipeddi, Minho Lee\",\"doi\":\"10.1145/2814940.2814977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Palmprint recognition is a challenging problem, mainly due to low quality of the patterns, variation in focal lens distance, large nonlinear deformations caused by contactless image acquisition system, and computational complexity for the large image size of typical palmprints. This paper proposes a new contactless biometric system using features of palm texture extracted from the single hand image acquired from a digital camera. In this work, we propose to apply convolutional neural network (CNN) for palmprint recognition. The results demonstrate that the extracted local and general features using CNN are invariant to image rotation, translation, and scale variations.\",\"PeriodicalId\":427567,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Human-Agent Interaction\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Human-Agent Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2814940.2814977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2814940.2814977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

掌纹识别是一个具有挑战性的问题,其主要原因是掌纹图案质量不高、焦距变化大、非接触式图像采集系统引起的较大非线性变形,以及典型掌纹图像尺寸较大的计算复杂度。本文提出了一种新的非接触式生物识别系统,该系统利用从数码相机获取的单手图像中提取的手掌纹理特征。在这项工作中,我们提出将卷积神经网络(CNN)应用于掌纹识别。结果表明,使用CNN提取的局部特征和一般特征对图像旋转、平移和尺度变化具有不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deformation Invariant and Contactless Palmprint Recognition Using Convolutional Neural Network
Palmprint recognition is a challenging problem, mainly due to low quality of the patterns, variation in focal lens distance, large nonlinear deformations caused by contactless image acquisition system, and computational complexity for the large image size of typical palmprints. This paper proposes a new contactless biometric system using features of palm texture extracted from the single hand image acquired from a digital camera. In this work, we propose to apply convolutional neural network (CNN) for palmprint recognition. The results demonstrate that the extracted local and general features using CNN are invariant to image rotation, translation, and scale variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Disaster Early Warning via a Configurable Data Collection Framework and Real-time Analytics Personification Aspect of Conversational Agents as Representations of a Physical Object Effects of Behavioral Complexity on Intention Attribution to Robots Spatial Communication and Recognition in Human-agent Interaction using Motion-parallax-based 3DCG Virtual Agent EEG Analysis on 3D Navigation in Virtual Realty with Different Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1