{"title":"高粱基纳米复合膜生产的系统分析与设计","authors":"Belladini Lovely, Taufik Djatna","doi":"10.1109/ICACSIS.2014.7065870","DOIUrl":null,"url":null,"abstract":"The existence of process complexity and higher inter-dependency within production system of biodegradable sorghum-based nanocomposite film are obviously required for system analysis and design. In this paper, nanocomposite film production was simulated in Business Process Modeling Notation (BPMN) model to assist researchers in decision making. The system was designed by using 2 processing variables as the model input, namely hydrolysis time and plasticizer ratio. Then by modifying and controlling value of these variables, researcher would determine their influences on 3 nanocomposite film crucial physical and thermal properties, such as Water Vapor Permeability (WVP), X-Ray Diffraction (XRD) and Derivative Thermo-gravimetric (DTG). Numerical examples were implemented in order to illustrate the related issues. Model verification result showed that the model succeeded conducting an improvement for all film properties compared to other various composites. Therefore this system is potentially possible to simulate sorghum-based nanocomposite film production in a simpler and fully controllable model.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"37 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A system analysis and design for sorghum based nano-composite film production\",\"authors\":\"Belladini Lovely, Taufik Djatna\",\"doi\":\"10.1109/ICACSIS.2014.7065870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of process complexity and higher inter-dependency within production system of biodegradable sorghum-based nanocomposite film are obviously required for system analysis and design. In this paper, nanocomposite film production was simulated in Business Process Modeling Notation (BPMN) model to assist researchers in decision making. The system was designed by using 2 processing variables as the model input, namely hydrolysis time and plasticizer ratio. Then by modifying and controlling value of these variables, researcher would determine their influences on 3 nanocomposite film crucial physical and thermal properties, such as Water Vapor Permeability (WVP), X-Ray Diffraction (XRD) and Derivative Thermo-gravimetric (DTG). Numerical examples were implemented in order to illustrate the related issues. Model verification result showed that the model succeeded conducting an improvement for all film properties compared to other various composites. Therefore this system is potentially possible to simulate sorghum-based nanocomposite film production in a simpler and fully controllable model.\",\"PeriodicalId\":443250,\"journal\":{\"name\":\"2014 International Conference on Advanced Computer Science and Information System\",\"volume\":\"37 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advanced Computer Science and Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2014.7065870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A system analysis and design for sorghum based nano-composite film production
The existence of process complexity and higher inter-dependency within production system of biodegradable sorghum-based nanocomposite film are obviously required for system analysis and design. In this paper, nanocomposite film production was simulated in Business Process Modeling Notation (BPMN) model to assist researchers in decision making. The system was designed by using 2 processing variables as the model input, namely hydrolysis time and plasticizer ratio. Then by modifying and controlling value of these variables, researcher would determine their influences on 3 nanocomposite film crucial physical and thermal properties, such as Water Vapor Permeability (WVP), X-Ray Diffraction (XRD) and Derivative Thermo-gravimetric (DTG). Numerical examples were implemented in order to illustrate the related issues. Model verification result showed that the model succeeded conducting an improvement for all film properties compared to other various composites. Therefore this system is potentially possible to simulate sorghum-based nanocomposite film production in a simpler and fully controllable model.