Shajahan Aboobacker, Akash Verma, Deepu Vijayasenan, Sumam David S., P. Suresh, Saraswathy Sreeram
{"title":"低分辨率胸膜和腹膜积液细胞学图像的语义分割","authors":"Shajahan Aboobacker, Akash Verma, Deepu Vijayasenan, Sumam David S., P. Suresh, Saraswathy Sreeram","doi":"10.1109/NCC55593.2022.9806747","DOIUrl":null,"url":null,"abstract":"Automation in the detection of malignancy in effusion cytology helps to save time and workload for cytopathologists. Cytopathologists typically consider a low-resolution image to identify the malignant regions. The identified regions are scanned at a higher resolution to confirm malignancy by investigating the cell level behaviour. Scanning and processing time can be saved by zooming only the identified malignant regions instead of entire low-resolution images. This work predicts malignancy in cytology images at a very low resolution (4X). Annotation of cytology images at a very low resolution is challenging due to the blurring of features such as nuclei and texture. We address this issue by upsampling the very low-resolution images using adversarial training. This work develops a semantic segmentation model trained on 10X images and reuse the network to utilize the 4X images. The prediction results of low resolution images improved by 15% in average F-score for adversarial based upsampling compared to a bicubic filter. The high resolution model gives a 95% average F-score for high resolution images. Also, the sub-area of the whole slide that requires to be scanned at high magnification is reduced by approximately 61% while using adversarial based upsampling compared to a bicubic filter.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Segmentation on Low Resolution Cytology Images of Pleural and Peritoneal Effusion\",\"authors\":\"Shajahan Aboobacker, Akash Verma, Deepu Vijayasenan, Sumam David S., P. Suresh, Saraswathy Sreeram\",\"doi\":\"10.1109/NCC55593.2022.9806747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automation in the detection of malignancy in effusion cytology helps to save time and workload for cytopathologists. Cytopathologists typically consider a low-resolution image to identify the malignant regions. The identified regions are scanned at a higher resolution to confirm malignancy by investigating the cell level behaviour. Scanning and processing time can be saved by zooming only the identified malignant regions instead of entire low-resolution images. This work predicts malignancy in cytology images at a very low resolution (4X). Annotation of cytology images at a very low resolution is challenging due to the blurring of features such as nuclei and texture. We address this issue by upsampling the very low-resolution images using adversarial training. This work develops a semantic segmentation model trained on 10X images and reuse the network to utilize the 4X images. The prediction results of low resolution images improved by 15% in average F-score for adversarial based upsampling compared to a bicubic filter. The high resolution model gives a 95% average F-score for high resolution images. Also, the sub-area of the whole slide that requires to be scanned at high magnification is reduced by approximately 61% while using adversarial based upsampling compared to a bicubic filter.\",\"PeriodicalId\":403870,\"journal\":{\"name\":\"2022 National Conference on Communications (NCC)\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC55593.2022.9806747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semantic Segmentation on Low Resolution Cytology Images of Pleural and Peritoneal Effusion
Automation in the detection of malignancy in effusion cytology helps to save time and workload for cytopathologists. Cytopathologists typically consider a low-resolution image to identify the malignant regions. The identified regions are scanned at a higher resolution to confirm malignancy by investigating the cell level behaviour. Scanning and processing time can be saved by zooming only the identified malignant regions instead of entire low-resolution images. This work predicts malignancy in cytology images at a very low resolution (4X). Annotation of cytology images at a very low resolution is challenging due to the blurring of features such as nuclei and texture. We address this issue by upsampling the very low-resolution images using adversarial training. This work develops a semantic segmentation model trained on 10X images and reuse the network to utilize the 4X images. The prediction results of low resolution images improved by 15% in average F-score for adversarial based upsampling compared to a bicubic filter. The high resolution model gives a 95% average F-score for high resolution images. Also, the sub-area of the whole slide that requires to be scanned at high magnification is reduced by approximately 61% while using adversarial based upsampling compared to a bicubic filter.