基于2型模糊c划分熵和粒子群优化算法的图像阈值分割

Assas Ouarda
{"title":"基于2型模糊c划分熵和粒子群优化算法的图像阈值分割","authors":"Assas Ouarda","doi":"10.1109/ICCVIA.2015.7351880","DOIUrl":null,"url":null,"abstract":"The imprecision in an image can be expressed in terms of ambiguity of belonging of a pixel in the image or the bottom (if it is black or white), or at the in-definition of the form and the geometry of a region in the image, or the combination of the two previous factors. The fuzzy c-partition entropy approach for threshold selection is one of the best image thresholding techniques, but its complexity increases with the number of thresholds. In this paper, a multi-level thresholding method for image segmentation using type-2 fuzzy c-partition entropy is presented. Type-2 fuzzy sets represent fuzzy sets with fuzzy membership values. The procedure for finding the optimal combination of all the fuzzy parameters is implemented by a particle swarm optimization algorithm. Experimental results reveal that the proposed image thresholding approaches has good performances for images with low contrast and grayscale ambiguity.","PeriodicalId":419122,"journal":{"name":"International Conference on Computer Vision and Image Analysis Applications","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image thresholding using type-2 fuzzy c-partition entropy and particle swarm optimization algorithm\",\"authors\":\"Assas Ouarda\",\"doi\":\"10.1109/ICCVIA.2015.7351880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The imprecision in an image can be expressed in terms of ambiguity of belonging of a pixel in the image or the bottom (if it is black or white), or at the in-definition of the form and the geometry of a region in the image, or the combination of the two previous factors. The fuzzy c-partition entropy approach for threshold selection is one of the best image thresholding techniques, but its complexity increases with the number of thresholds. In this paper, a multi-level thresholding method for image segmentation using type-2 fuzzy c-partition entropy is presented. Type-2 fuzzy sets represent fuzzy sets with fuzzy membership values. The procedure for finding the optimal combination of all the fuzzy parameters is implemented by a particle swarm optimization algorithm. Experimental results reveal that the proposed image thresholding approaches has good performances for images with low contrast and grayscale ambiguity.\",\"PeriodicalId\":419122,\"journal\":{\"name\":\"International Conference on Computer Vision and Image Analysis Applications\",\"volume\":\"334 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision and Image Analysis Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVIA.2015.7351880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision and Image Analysis Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVIA.2015.7351880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像中的不精确可以表现为图像或底部(如果是黑色或白色)像素归属的模糊性,也可以表现为图像中某个区域的形状和几何形状的不明确,或者前两种因素的结合。模糊c分割熵阈值选择方法是一种较好的图像阈值处理方法,但其复杂度随着阈值的增加而增加。提出了一种基于2型模糊c分割熵的多级阈值图像分割方法。二类模糊集表示具有模糊隶属度值的模糊集。利用粒子群优化算法求解各模糊参数的最优组合。实验结果表明,所提出的图像阈值分割方法对于低对比度和灰度模糊的图像具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image thresholding using type-2 fuzzy c-partition entropy and particle swarm optimization algorithm
The imprecision in an image can be expressed in terms of ambiguity of belonging of a pixel in the image or the bottom (if it is black or white), or at the in-definition of the form and the geometry of a region in the image, or the combination of the two previous factors. The fuzzy c-partition entropy approach for threshold selection is one of the best image thresholding techniques, but its complexity increases with the number of thresholds. In this paper, a multi-level thresholding method for image segmentation using type-2 fuzzy c-partition entropy is presented. Type-2 fuzzy sets represent fuzzy sets with fuzzy membership values. The procedure for finding the optimal combination of all the fuzzy parameters is implemented by a particle swarm optimization algorithm. Experimental results reveal that the proposed image thresholding approaches has good performances for images with low contrast and grayscale ambiguity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Labeling abnormalities in video based complex Human-Object Interactions by robust affordance modelling Implementation of optical correlator for face recognition applications Modeling information resources and application using ontological engineering Accurate, swift and noiseless image binarization Study with RK4 & ANOVA the location of the tumor at the smallest time for multi-images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1