不平衡皮肤癌分类数据集的改进Inception-v4

Taha Emara, H. Afify, F. H. Ismail, A. Hassanien
{"title":"不平衡皮肤癌分类数据集的改进Inception-v4","authors":"Taha Emara, H. Afify, F. H. Ismail, A. Hassanien","doi":"10.1109/ICCES48960.2019.9068110","DOIUrl":null,"url":null,"abstract":"Deep learning architectures, especially deep convolutional neural networks (CNN) achieve high accuracy on object classification and localization tasks. Achieving such high accuracy requires powerful devices. In this paper, rather than an ensemble of multiple complex models, a single Inception-v4 model is adapted to classify extracted from the HAM10000 dataset. The proposed model is enhanced by employing feature reuse using long residual connection in which the features extracted from earlier layers are concatenated with the high-level layers to increase the model classification performance. The dataset used in this study is imbalanced; therefore, a data sampling approach is used to mitigate the data imbalance effect. The proposed architecture achieves an accuracy of 94.7% using the provided test set at the official benchmark for the International Skin Imaging Collaboration (ISIC) 2018.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Modified Inception-v4 for Imbalanced Skin Cancer Classification Dataset\",\"authors\":\"Taha Emara, H. Afify, F. H. Ismail, A. Hassanien\",\"doi\":\"10.1109/ICCES48960.2019.9068110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning architectures, especially deep convolutional neural networks (CNN) achieve high accuracy on object classification and localization tasks. Achieving such high accuracy requires powerful devices. In this paper, rather than an ensemble of multiple complex models, a single Inception-v4 model is adapted to classify extracted from the HAM10000 dataset. The proposed model is enhanced by employing feature reuse using long residual connection in which the features extracted from earlier layers are concatenated with the high-level layers to increase the model classification performance. The dataset used in this study is imbalanced; therefore, a data sampling approach is used to mitigate the data imbalance effect. The proposed architecture achieves an accuracy of 94.7% using the provided test set at the official benchmark for the International Skin Imaging Collaboration (ISIC) 2018.\",\"PeriodicalId\":136643,\"journal\":{\"name\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES48960.2019.9068110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

深度学习架构,特别是深度卷积神经网络(CNN)在目标分类和定位任务上实现了高精度。实现如此高的精度需要强大的设备。本文采用从HAM10000数据集中提取的Inception-v4模型进行分类,而不是多个复杂模型的集成。采用长残差连接对特征进行重用,将较早层提取的特征与较高级层连接在一起,从而提高模型的分类性能。本研究使用的数据集是不平衡的;因此,采用数据采样的方法来缓解数据不平衡的影响。使用国际皮肤成像协作(ISIC) 2018年官方基准提供的测试集,所提出的架构实现了94.7%的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modified Inception-v4 for Imbalanced Skin Cancer Classification Dataset
Deep learning architectures, especially deep convolutional neural networks (CNN) achieve high accuracy on object classification and localization tasks. Achieving such high accuracy requires powerful devices. In this paper, rather than an ensemble of multiple complex models, a single Inception-v4 model is adapted to classify extracted from the HAM10000 dataset. The proposed model is enhanced by employing feature reuse using long residual connection in which the features extracted from earlier layers are concatenated with the high-level layers to increase the model classification performance. The dataset used in this study is imbalanced; therefore, a data sampling approach is used to mitigate the data imbalance effect. The proposed architecture achieves an accuracy of 94.7% using the provided test set at the official benchmark for the International Skin Imaging Collaboration (ISIC) 2018.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social Networking Sites (SNS) and Digital Communication Across Nations Improving Golay Code Using Hashing Technique Alzheimer's Disease Integrated Ontology (ADIO) Session PC: Parallel and Cloud Computing Multipath Traffic Engineering for Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1