基于新生物地理学优化算法的钻井大车伸缩臂极限工况计算

Yancheng Lv, Lin Lin, Jie Liu, Hao Guo, Chang-sheng Tong, Zhiquan Cui
{"title":"基于新生物地理学优化算法的钻井大车伸缩臂极限工况计算","authors":"Yancheng Lv, Lin Lin, Jie Liu, Hao Guo, Chang-sheng Tong, Zhiquan Cui","doi":"10.1109/PHM2022-London52454.2022.00016","DOIUrl":null,"url":null,"abstract":"As a key part of the boom structure of drilling jumbo, the structural stability of the telescopic boom plays a decisive role in the operational reliability of the drilling jumbo. However, the extreme condition of the telescopic boom in the existing optimization cases is determined according to the experience of designers, and there is a lack of research on the extreme condition of the telescopic boom. Given the above problem, the calculation model of the load at the top of the telescopic boom is constructed, and the Biogeography-Based Optimization (BBO) algorithm is used to optimize the pose parameters of the boom structure with the maximum optimization objective of the calculation results of the model. To solve the problem of insufficient adaptability of the linear migration model, 12 nonlinear migration models are proposed and combined with the original BBO algorithm. The performance tests of various migration models are carried out by calculating the limit value of the load at the top of the telescopic boom, the results show that the overall performance and stability of the BBO algorithm based on the exponential migration model is better than other classic optimization algorithms and BBO algorithms based on other migration models. The exponential migration model can better adapt to the nonlinear migration problem, and the corresponding BBO algorithm has better optimization ability.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Calculation of Extreme Condition of Telescopic Boom of Drilling Jumbo Based on New Biogeography-Based Optimization Algorithm\",\"authors\":\"Yancheng Lv, Lin Lin, Jie Liu, Hao Guo, Chang-sheng Tong, Zhiquan Cui\",\"doi\":\"10.1109/PHM2022-London52454.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key part of the boom structure of drilling jumbo, the structural stability of the telescopic boom plays a decisive role in the operational reliability of the drilling jumbo. However, the extreme condition of the telescopic boom in the existing optimization cases is determined according to the experience of designers, and there is a lack of research on the extreme condition of the telescopic boom. Given the above problem, the calculation model of the load at the top of the telescopic boom is constructed, and the Biogeography-Based Optimization (BBO) algorithm is used to optimize the pose parameters of the boom structure with the maximum optimization objective of the calculation results of the model. To solve the problem of insufficient adaptability of the linear migration model, 12 nonlinear migration models are proposed and combined with the original BBO algorithm. The performance tests of various migration models are carried out by calculating the limit value of the load at the top of the telescopic boom, the results show that the overall performance and stability of the BBO algorithm based on the exponential migration model is better than other classic optimization algorithms and BBO algorithms based on other migration models. The exponential migration model can better adapt to the nonlinear migration problem, and the corresponding BBO algorithm has better optimization ability.\",\"PeriodicalId\":269605,\"journal\":{\"name\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM2022-London52454.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伸缩臂作为钻井大车臂架结构的关键部件,其结构稳定性对钻井大车的运行可靠性起着决定性的作用。然而,现有优化案例中伸缩臂的极限工况是根据设计人员的经验确定的,缺乏对伸缩臂极限工况的研究。针对上述问题,构建了伸缩臂顶载荷计算模型,并以模型计算结果的优化目标最大为目标,采用基于生物地理的优化算法对伸缩臂结构的位姿参数进行优化。为解决线性迁移模型适应性不足的问题,提出了12种非线性迁移模型,并与原BBO算法相结合。通过计算伸缩臂顶载荷极限值,对各种迁移模型进行了性能测试,结果表明,基于指数迁移模型的BBO算法的整体性能和稳定性优于其他经典优化算法和基于其他迁移模型的BBO算法。指数迁移模型能较好地适应非线性迁移问题,相应的BBO算法具有较好的优化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Calculation of Extreme Condition of Telescopic Boom of Drilling Jumbo Based on New Biogeography-Based Optimization Algorithm
As a key part of the boom structure of drilling jumbo, the structural stability of the telescopic boom plays a decisive role in the operational reliability of the drilling jumbo. However, the extreme condition of the telescopic boom in the existing optimization cases is determined according to the experience of designers, and there is a lack of research on the extreme condition of the telescopic boom. Given the above problem, the calculation model of the load at the top of the telescopic boom is constructed, and the Biogeography-Based Optimization (BBO) algorithm is used to optimize the pose parameters of the boom structure with the maximum optimization objective of the calculation results of the model. To solve the problem of insufficient adaptability of the linear migration model, 12 nonlinear migration models are proposed and combined with the original BBO algorithm. The performance tests of various migration models are carried out by calculating the limit value of the load at the top of the telescopic boom, the results show that the overall performance and stability of the BBO algorithm based on the exponential migration model is better than other classic optimization algorithms and BBO algorithms based on other migration models. The exponential migration model can better adapt to the nonlinear migration problem, and the corresponding BBO algorithm has better optimization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defending Against Adversarial Attacks on Time- series with Selective Classification Fault diagnosis of fire control system based on genetic algorithm optimized BP neural network Monitoring and Mitigating Ionosphere threats in GNSS Space Environment Science A Relation Prediction Method for Industrial Knowledge Graph with Complex Relations Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and Informed by the Principle of Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1