{"title":"针对低功耗SoC设计的硬件安全技术综述","authors":"Alan Ehret, K. Gettings, B. R. Jordan, M. Kinsy","doi":"10.1109/HPEC.2019.8916486","DOIUrl":null,"url":null,"abstract":"In this work, we survey hardware-based security techniques applicable to low-power system-on-chip designs. Techniques related to a system’s processing elements, volatile main memory and caches, non-volatile memory and on-chip interconnects are examined. Threat models for each subsystem and technique are considered. Performance overheads and other trade-offs for each technique are discussed. Defenses with similar threat models are compared.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Survey on Hardware Security Techniques Targeting Low-Power SoC Designs\",\"authors\":\"Alan Ehret, K. Gettings, B. R. Jordan, M. Kinsy\",\"doi\":\"10.1109/HPEC.2019.8916486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we survey hardware-based security techniques applicable to low-power system-on-chip designs. Techniques related to a system’s processing elements, volatile main memory and caches, non-volatile memory and on-chip interconnects are examined. Threat models for each subsystem and technique are considered. Performance overheads and other trade-offs for each technique are discussed. Defenses with similar threat models are compared.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Survey on Hardware Security Techniques Targeting Low-Power SoC Designs
In this work, we survey hardware-based security techniques applicable to low-power system-on-chip designs. Techniques related to a system’s processing elements, volatile main memory and caches, non-volatile memory and on-chip interconnects are examined. Threat models for each subsystem and technique are considered. Performance overheads and other trade-offs for each technique are discussed. Defenses with similar threat models are compared.