基于机器学习的运动事件自动检测与计数

Qingchao Zeng, Jun Liu, Dongya Yang, Yichuan He, Xueyan Sun, Ruixiang Li, Fang Wang
{"title":"基于机器学习的运动事件自动检测与计数","authors":"Qingchao Zeng, Jun Liu, Dongya Yang, Yichuan He, Xueyan Sun, Ruixiang Li, Fang Wang","doi":"10.1109/IC-NIDC54101.2021.9660509","DOIUrl":null,"url":null,"abstract":"Sport event detection is an important task in the research area of human behavior recognition. Owing to different motion models of different sport events, existing general human pose recognition methods cannot achieve high accuracy for sport events detection and counting. In this paper, we propose and implement a sport event detection and counting algorithm framework based on human skeletal information. Experimental evaluation results demonstrate that the algorithm can accurately detect the sit-up events and count the number of sit-ups with the highest average accuracy of 96%.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Based Automatic Sport Event Detection and Counting\",\"authors\":\"Qingchao Zeng, Jun Liu, Dongya Yang, Yichuan He, Xueyan Sun, Ruixiang Li, Fang Wang\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sport event detection is an important task in the research area of human behavior recognition. Owing to different motion models of different sport events, existing general human pose recognition methods cannot achieve high accuracy for sport events detection and counting. In this paper, we propose and implement a sport event detection and counting algorithm framework based on human skeletal information. Experimental evaluation results demonstrate that the algorithm can accurately detect the sit-up events and count the number of sit-ups with the highest average accuracy of 96%.\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

运动事件检测是人类行为识别研究领域的重要课题。由于不同运动项目的运动模型不同,现有的一般人体姿态识别方法在运动项目检测和计数中无法达到较高的准确率。本文提出并实现了一种基于人体骨骼信息的体育赛事检测与计数算法框架。实验评估结果表明,该算法能够准确地检测出仰卧起坐事件,统计出仰卧起坐的次数,平均准确率最高达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Based Automatic Sport Event Detection and Counting
Sport event detection is an important task in the research area of human behavior recognition. Owing to different motion models of different sport events, existing general human pose recognition methods cannot achieve high accuracy for sport events detection and counting. In this paper, we propose and implement a sport event detection and counting algorithm framework based on human skeletal information. Experimental evaluation results demonstrate that the algorithm can accurately detect the sit-up events and count the number of sit-ups with the highest average accuracy of 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Dense FAQ Retrieval with Synthetic Training A Security Integrated Attestation Scheme for Embedded Devices Zero-Shot Voice Cloning Using Variational Embedding with Attention Mechanism Convolutional Neural Network Based Transmit Power Control for D2D Communication in Unlicensed Spectrum WCD: A New Chinese Online Social Media Dataset for Clickbait Analysis and Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1