{"title":"一个165-230GHz SiGe放大倍频链,峰值输出功率为5dBm","authors":"Sriram Muralidharan, Kefei Wu, M. Hella","doi":"10.1109/RFIC.2016.7508311","DOIUrl":null,"url":null,"abstract":"This paper presents the design and measurements of a 165-230 GHz SiGe BiCMOS power amplifier - frequency doubler chain, which can deliver up to 5 dBm peak output power at 204 GHz with a 3-dB bandwidth of 65 GHz. A compact high efficiency power divider is used to split the power from the input mm-wave source and convert the single ended input to two differential signals. The 3-staged transformer-coupled cascode power amplifier is optimized to deliver 14 dBm saturated output power at 110 GHz, while the frequency doubler uses a second harmonic reflector at its input to reduce the conversion loss. The chip is designed in 0.13μm SiGe BiCMOS technology. To the authors' best knowledge, this is the highest output power above 200 GHz from silicon based amplifier-multiplier chains.","PeriodicalId":163595,"journal":{"name":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A 165–230GHz SiGe amplifier-doubler chain with 5dBm peak output power\",\"authors\":\"Sriram Muralidharan, Kefei Wu, M. Hella\",\"doi\":\"10.1109/RFIC.2016.7508311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and measurements of a 165-230 GHz SiGe BiCMOS power amplifier - frequency doubler chain, which can deliver up to 5 dBm peak output power at 204 GHz with a 3-dB bandwidth of 65 GHz. A compact high efficiency power divider is used to split the power from the input mm-wave source and convert the single ended input to two differential signals. The 3-staged transformer-coupled cascode power amplifier is optimized to deliver 14 dBm saturated output power at 110 GHz, while the frequency doubler uses a second harmonic reflector at its input to reduce the conversion loss. The chip is designed in 0.13μm SiGe BiCMOS technology. To the authors' best knowledge, this is the highest output power above 200 GHz from silicon based amplifier-multiplier chains.\",\"PeriodicalId\":163595,\"journal\":{\"name\":\"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2016.7508311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2016.7508311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 165–230GHz SiGe amplifier-doubler chain with 5dBm peak output power
This paper presents the design and measurements of a 165-230 GHz SiGe BiCMOS power amplifier - frequency doubler chain, which can deliver up to 5 dBm peak output power at 204 GHz with a 3-dB bandwidth of 65 GHz. A compact high efficiency power divider is used to split the power from the input mm-wave source and convert the single ended input to two differential signals. The 3-staged transformer-coupled cascode power amplifier is optimized to deliver 14 dBm saturated output power at 110 GHz, while the frequency doubler uses a second harmonic reflector at its input to reduce the conversion loss. The chip is designed in 0.13μm SiGe BiCMOS technology. To the authors' best knowledge, this is the highest output power above 200 GHz from silicon based amplifier-multiplier chains.