医疗保健数据机器学习中的语义数据类型

Janusz Wojtusiak
{"title":"医疗保健数据机器学习中的语义数据类型","authors":"Janusz Wojtusiak","doi":"10.1109/ICMLA.2012.41","DOIUrl":null,"url":null,"abstract":"Healthcare is particularly rich in semantic information and background knowledge describing data. This paper discusses a number of semantic data types that can be found in healthcare data, presents how the semantics can be extracted from existing sources including the Unified Medical Language System (UMLS), discusses how the semantics can be used in both supervised and unsupervised learning, and presents an example rule learning system that implements several of these types. Results from three example applications in the healthcare domain are used to further exemplify semantic data types.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Semantic Data Types in Machine Learning from Healthcare Data\",\"authors\":\"Janusz Wojtusiak\",\"doi\":\"10.1109/ICMLA.2012.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Healthcare is particularly rich in semantic information and background knowledge describing data. This paper discusses a number of semantic data types that can be found in healthcare data, presents how the semantics can be extracted from existing sources including the Unified Medical Language System (UMLS), discusses how the semantics can be used in both supervised and unsupervised learning, and presents an example rule learning system that implements several of these types. Results from three example applications in the healthcare domain are used to further exemplify semantic data types.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

医疗保健尤其具有丰富的语义信息和描述数据的背景知识。本文讨论了可以在医疗保健数据中找到的许多语义数据类型,介绍了如何从包括统一医学语言系统(UMLS)在内的现有来源中提取语义,讨论了如何在监督学习和无监督学习中使用语义,并提供了实现其中几种类型的示例规则学习系统。来自医疗保健领域的三个示例应用程序的结果用于进一步举例说明语义数据类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Data Types in Machine Learning from Healthcare Data
Healthcare is particularly rich in semantic information and background knowledge describing data. This paper discusses a number of semantic data types that can be found in healthcare data, presents how the semantics can be extracted from existing sources including the Unified Medical Language System (UMLS), discusses how the semantics can be used in both supervised and unsupervised learning, and presents an example rule learning system that implements several of these types. Results from three example applications in the healthcare domain are used to further exemplify semantic data types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1