A. Sedov, V. Khryashchev, R. Larionov, A. Ostrovskaya
{"title":"基于卷积神经网络的卫星图像分割问题中的损失函数选择","authors":"A. Sedov, V. Khryashchev, R. Larionov, A. Ostrovskaya","doi":"10.1109/SYNCHROINFO.2019.8814279","DOIUrl":null,"url":null,"abstract":"Results of training a convolutional neural network for the satellite image segmentation are presented. Input images use four channels: Red, Green, Blue and Near-infrared. The convolutional neural network was trained to mark areas containing buildings and facilities. U-Net architecture was used for the task. For learning procedure supercomputer NVIDIA DGX-1 was used. The process of data augmentation is described. Results of training with different loss functions are compared. Network evaluation results for different types of residential areas are presented.","PeriodicalId":363848,"journal":{"name":"2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Loss Function Selection in a Problem of Satellite Image Segmentation Using Convolutional Neural Network\",\"authors\":\"A. Sedov, V. Khryashchev, R. Larionov, A. Ostrovskaya\",\"doi\":\"10.1109/SYNCHROINFO.2019.8814279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of training a convolutional neural network for the satellite image segmentation are presented. Input images use four channels: Red, Green, Blue and Near-infrared. The convolutional neural network was trained to mark areas containing buildings and facilities. U-Net architecture was used for the task. For learning procedure supercomputer NVIDIA DGX-1 was used. The process of data augmentation is described. Results of training with different loss functions are compared. Network evaluation results for different types of residential areas are presented.\",\"PeriodicalId\":363848,\"journal\":{\"name\":\"2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNCHROINFO.2019.8814279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNCHROINFO.2019.8814279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Loss Function Selection in a Problem of Satellite Image Segmentation Using Convolutional Neural Network
Results of training a convolutional neural network for the satellite image segmentation are presented. Input images use four channels: Red, Green, Blue and Near-infrared. The convolutional neural network was trained to mark areas containing buildings and facilities. U-Net architecture was used for the task. For learning procedure supercomputer NVIDIA DGX-1 was used. The process of data augmentation is described. Results of training with different loss functions are compared. Network evaluation results for different types of residential areas are presented.