基于多目标优化方法的纳米光子器件设计

Xun Lu, Yong Kyu Kim, Seong-min Lee, Chengjun Jin, Seong-Cheol Byeon, Tasadduq Hussain, Muzahir Ali, Seok-min Kim
{"title":"基于多目标优化方法的纳米光子器件设计","authors":"Xun Lu, Yong Kyu Kim, Seong-min Lee, Chengjun Jin, Seong-Cheol Byeon, Tasadduq Hussain, Muzahir Ali, Seok-min Kim","doi":"10.1109/ICTC55196.2022.9952410","DOIUrl":null,"url":null,"abstract":"The performance of nanophotonic devices was very sensitive and nonlinear to the structural design parameters. In this manuscript, two examples of multi-objective optimizations using the response surface method and Kriging surrogate model with the disability function for the designing of nanophotonic devices were introduced. Although reasonable optimum design parameters could be obtained using performance expectation models after the proper selection of key design factors and ranges of design factors, a machine learning method with big data could be a powerful solution for the extensive parametric analysis and optimization in the design of nanophotonic devices.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"615 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Nanophotonic Devices using Multi Objective Optimization Method\",\"authors\":\"Xun Lu, Yong Kyu Kim, Seong-min Lee, Chengjun Jin, Seong-Cheol Byeon, Tasadduq Hussain, Muzahir Ali, Seok-min Kim\",\"doi\":\"10.1109/ICTC55196.2022.9952410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of nanophotonic devices was very sensitive and nonlinear to the structural design parameters. In this manuscript, two examples of multi-objective optimizations using the response surface method and Kriging surrogate model with the disability function for the designing of nanophotonic devices were introduced. Although reasonable optimum design parameters could be obtained using performance expectation models after the proper selection of key design factors and ranges of design factors, a machine learning method with big data could be a powerful solution for the extensive parametric analysis and optimization in the design of nanophotonic devices.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"615 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9952410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米光子器件的性能对结构参数非常敏感且非线性。本文介绍了两个应用响应面法和Kriging代理模型进行纳米光子器件设计的多目标优化实例。虽然在合理选择关键设计因子和设计因子范围后,可以通过性能期望模型获得合理的优化设计参数,但基于大数据的机器学习方法可以为纳米光子器件设计中广泛的参数分析和优化提供有力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Nanophotonic Devices using Multi Objective Optimization Method
The performance of nanophotonic devices was very sensitive and nonlinear to the structural design parameters. In this manuscript, two examples of multi-objective optimizations using the response surface method and Kriging surrogate model with the disability function for the designing of nanophotonic devices were introduced. Although reasonable optimum design parameters could be obtained using performance expectation models after the proper selection of key design factors and ranges of design factors, a machine learning method with big data could be a powerful solution for the extensive parametric analysis and optimization in the design of nanophotonic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
6G Integrated Sensing and Communication: Recent Results and Future Directions Analysis of Use Cases Enabling AI/ML to IOT Service Platforms A Study on ECG Monitoring Embedded Systems Development of Touch Interface Using LIDAR for Multi-user Interactions in Projection-based VR Self-Conditional Crowd Activity Detection Network with Multi-label Classification Head
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1