加权自动编码推荐系统

Shuying Zhu, Weining Shen, Annie Qu
{"title":"加权自动编码推荐系统","authors":"Shuying Zhu, Weining Shen, Annie Qu","doi":"10.1002/sam.11571","DOIUrl":null,"url":null,"abstract":"Recommender systems are information filtering tools that seek to match customers with products or services of interest. Most of the prevalent collaborative filtering recommender systems, such as matrix factorization and AutoRec, suffer from the “cold‐start” problem, where they fail to provide meaningful recommendations for new users or new items due to informative‐missing from the training data. To address this problem, we propose a weighted AutoEncoding model to leverage information from other users or items that share similar characteristics. The proposed method provides an effective strategy for borrowing strength from user or item‐specific clustering structure as well as pairwise similarity in the training data, while achieving high computational efficiency and dimension reduction, and preserving nonlinear relationships between user preferences and item features. Simulation studies and applications to three real datasets show advantages in prediction accuracy of the proposed model compared to current state‐of‐the‐art approaches.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted AutoEncoding recommender system\",\"authors\":\"Shuying Zhu, Weining Shen, Annie Qu\",\"doi\":\"10.1002/sam.11571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems are information filtering tools that seek to match customers with products or services of interest. Most of the prevalent collaborative filtering recommender systems, such as matrix factorization and AutoRec, suffer from the “cold‐start” problem, where they fail to provide meaningful recommendations for new users or new items due to informative‐missing from the training data. To address this problem, we propose a weighted AutoEncoding model to leverage information from other users or items that share similar characteristics. The proposed method provides an effective strategy for borrowing strength from user or item‐specific clustering structure as well as pairwise similarity in the training data, while achieving high computational efficiency and dimension reduction, and preserving nonlinear relationships between user preferences and item features. Simulation studies and applications to three real datasets show advantages in prediction accuracy of the proposed model compared to current state‐of‐the‐art approaches.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推荐系统是信息过滤工具,旨在将客户与感兴趣的产品或服务相匹配。大多数流行的协同过滤推荐系统,如矩阵分解和AutoRec,都存在“冷启动”问题,即由于训练数据中的信息缺失,它们无法为新用户或新项目提供有意义的推荐。为了解决这个问题,我们提出了一个加权的AutoEncoding模型来利用来自其他用户或具有相似特征的项目的信息。该方法提供了一种有效的策略,可以借鉴用户或特定项目的聚类结构以及训练数据中的成对相似性,同时实现了高计算效率和降维,并保留了用户偏好与项目特征之间的非线性关系。对三个真实数据集的仿真研究和应用表明,与当前最先进的方法相比,所提出的模型在预测精度方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted AutoEncoding recommender system
Recommender systems are information filtering tools that seek to match customers with products or services of interest. Most of the prevalent collaborative filtering recommender systems, such as matrix factorization and AutoRec, suffer from the “cold‐start” problem, where they fail to provide meaningful recommendations for new users or new items due to informative‐missing from the training data. To address this problem, we propose a weighted AutoEncoding model to leverage information from other users or items that share similar characteristics. The proposed method provides an effective strategy for borrowing strength from user or item‐specific clustering structure as well as pairwise similarity in the training data, while achieving high computational efficiency and dimension reduction, and preserving nonlinear relationships between user preferences and item features. Simulation studies and applications to three real datasets show advantages in prediction accuracy of the proposed model compared to current state‐of‐the‐art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1