面向未来车辆技术的人为因素研究进展

M. Akamatsu, P. Green, K. Bengler
{"title":"面向未来车辆技术的人为因素研究进展","authors":"M. Akamatsu, P. Green, K. Bengler","doi":"10.1155/2013/749089","DOIUrl":null,"url":null,"abstract":"Although automotive human factors research began after the World War II, vehicular technology has developed to adapt the vehicle to the human operator and the requirements of traffic since its inception, with the initial focus being on ease of operation of the steering wheel and brake pedal and methods to provide adequate road illumination at night. For many decades, human factors research mainly concerned making the primary driving tasks (controlling a vehicle and obeying signs and signals) easy to do, providing adequate space for the driver and passengers, mitigating crash injuries, and making secondary controls and displays inside the vehicle easy to use. With the introduction of advanced driver assistance systems and driver information systems in 1980s, there have been a marked increase in the number of studies of driver mental workload as well as more general, quantitative studies of driver behavior, both on real roads and in driving simulators to help design and evaluate those systems. That line of human factors research will continue as vehicle automation and driver information increases. Another line of research concerns driver distraction, with a special concern being the use of mobile devices such as cellular phones. The implementation of driver assistance and information systems has resulted in a shift in automotive human factors research. METHODS for the automotive human factors research have been mostly transferred from psychology and cognitive science, physiology, statistics, and various engineering disciplines. But, as vehicular technology continues to evolve, new methods and theories are needed to address those issues and the human aspects of the vehicular technology so vehicles will be safe, easy to use, and useful. Keywords: Driver distraction; Language: en","PeriodicalId":269774,"journal":{"name":"International Journal of Vehicular Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advances of Human Factors Research for Future Vehicular Technology\",\"authors\":\"M. Akamatsu, P. Green, K. Bengler\",\"doi\":\"10.1155/2013/749089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although automotive human factors research began after the World War II, vehicular technology has developed to adapt the vehicle to the human operator and the requirements of traffic since its inception, with the initial focus being on ease of operation of the steering wheel and brake pedal and methods to provide adequate road illumination at night. For many decades, human factors research mainly concerned making the primary driving tasks (controlling a vehicle and obeying signs and signals) easy to do, providing adequate space for the driver and passengers, mitigating crash injuries, and making secondary controls and displays inside the vehicle easy to use. With the introduction of advanced driver assistance systems and driver information systems in 1980s, there have been a marked increase in the number of studies of driver mental workload as well as more general, quantitative studies of driver behavior, both on real roads and in driving simulators to help design and evaluate those systems. That line of human factors research will continue as vehicle automation and driver information increases. Another line of research concerns driver distraction, with a special concern being the use of mobile devices such as cellular phones. The implementation of driver assistance and information systems has resulted in a shift in automotive human factors research. METHODS for the automotive human factors research have been mostly transferred from psychology and cognitive science, physiology, statistics, and various engineering disciplines. But, as vehicular technology continues to evolve, new methods and theories are needed to address those issues and the human aspects of the vehicular technology so vehicles will be safe, easy to use, and useful. Keywords: Driver distraction; Language: en\",\"PeriodicalId\":269774,\"journal\":{\"name\":\"International Journal of Vehicular Technology\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/749089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/749089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虽然汽车人为因素的研究始于第二次世界大战后,但车辆技术已经发展到使车辆适应人类操作员和交通的要求,最初的重点是方向盘和刹车踏板的易于操作以及在夜间提供充足道路照明的方法。几十年来,人为因素的研究主要涉及使主要驾驶任务(控制车辆和服从标志和信号)易于完成,为驾驶员和乘客提供足够的空间,减轻碰撞伤害,以及使车内的次要控制和显示易于使用。随着20世纪80年代先进的驾驶员辅助系统和驾驶员信息系统的引入,对驾驶员心理负荷的研究以及对驾驶员行为的更一般的定量研究的数量显著增加,无论是在真实道路上还是在驾驶模拟器上,以帮助设计和评估这些系统。随着车辆自动化和驾驶员信息的增加,这方面的人为因素研究将继续下去。另一项研究涉及司机分心,特别关注的是使用手机等移动设备。驾驶辅助和信息系统的实施导致了汽车人为因素研究的转变。汽车人为因素的研究方法主要是从心理学和认知科学、生理学、统计学和各种工程学科转移过来的。但是,随着车辆技术的不断发展,需要新的方法和理论来解决这些问题,以及车辆技术的人性化方面,以便车辆安全,易于使用和有用。关键词:驾驶员分心;语言:在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances of Human Factors Research for Future Vehicular Technology
Although automotive human factors research began after the World War II, vehicular technology has developed to adapt the vehicle to the human operator and the requirements of traffic since its inception, with the initial focus being on ease of operation of the steering wheel and brake pedal and methods to provide adequate road illumination at night. For many decades, human factors research mainly concerned making the primary driving tasks (controlling a vehicle and obeying signs and signals) easy to do, providing adequate space for the driver and passengers, mitigating crash injuries, and making secondary controls and displays inside the vehicle easy to use. With the introduction of advanced driver assistance systems and driver information systems in 1980s, there have been a marked increase in the number of studies of driver mental workload as well as more general, quantitative studies of driver behavior, both on real roads and in driving simulators to help design and evaluate those systems. That line of human factors research will continue as vehicle automation and driver information increases. Another line of research concerns driver distraction, with a special concern being the use of mobile devices such as cellular phones. The implementation of driver assistance and information systems has resulted in a shift in automotive human factors research. METHODS for the automotive human factors research have been mostly transferred from psychology and cognitive science, physiology, statistics, and various engineering disciplines. But, as vehicular technology continues to evolve, new methods and theories are needed to address those issues and the human aspects of the vehicular technology so vehicles will be safe, easy to use, and useful. Keywords: Driver distraction; Language: en
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of an adaptive infotainment system in a vehicle and validation in real driving scenarios Driver Behavior Modeling: Developments and Future Directions Experimental Test of Artificial Potential Field-Based Automobiles Automated Perpendicular Parking Numerical Simulation Analysis of an Oversteer In-Wheel Small Electric Vehicle Integrated with Four-Wheel Drive and Independent Steering Modeling, Validation, and Control of Electronically Actuated Pitman Arm Steering for Armored Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1