22mm厚椭圆封头凹痕的根本原因及FFS分析

P. Schreurs, S. Kusters
{"title":"22mm厚椭圆封头凹痕的根本原因及FFS分析","authors":"P. Schreurs, S. Kusters","doi":"10.1115/PVP2018-84516","DOIUrl":null,"url":null,"abstract":"This paper describes the failure of a jacketed vessel. The product pressure is 16 barg (inner vessel; D = 2200 mm) and is heated with thermal oil in the jacket (operated at 4barg). The jacket is split up in different zones which can be opened and closed separately. After a shut down, several valves were not opened properly. This resulted in blocking-in of the jacket on the top head of the vessel during the start-up and operation of the vessel. The vessel was heated to the operating temperature (±250°C), causing a pressure increase of the blocked-in thermal oil. The jacket has a wall thickness of 10 mm, and the vessel head has a wall thickness of 22 mm. Because of the pressure increase, failure occurred at a nozzle weld on the inner pressure vessel shell. This resulted in a leakage of thermal oil into the vessel. The jacket itself deformed but did not fail.\n Based on a detailed FE analysis, it has been concluded that failure occurred as a result of (local) buckling of the 22mm thick elliptical head (diameter of ±2.200mm). This paper describes the failure that occurred and the assessments performed to determine and validate the root cause of the failure. A level 3 assessment according to ASME VIII div 2 Part 5 (1) was used to determine if the vessel is still safe for operation.","PeriodicalId":384066,"journal":{"name":"Volume 3B: Design and Analysis","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root Cause and FFS Analysis of a Dent in a 22mm Thick Elliptical Head\",\"authors\":\"P. Schreurs, S. Kusters\",\"doi\":\"10.1115/PVP2018-84516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the failure of a jacketed vessel. The product pressure is 16 barg (inner vessel; D = 2200 mm) and is heated with thermal oil in the jacket (operated at 4barg). The jacket is split up in different zones which can be opened and closed separately. After a shut down, several valves were not opened properly. This resulted in blocking-in of the jacket on the top head of the vessel during the start-up and operation of the vessel. The vessel was heated to the operating temperature (±250°C), causing a pressure increase of the blocked-in thermal oil. The jacket has a wall thickness of 10 mm, and the vessel head has a wall thickness of 22 mm. Because of the pressure increase, failure occurred at a nozzle weld on the inner pressure vessel shell. This resulted in a leakage of thermal oil into the vessel. The jacket itself deformed but did not fail.\\n Based on a detailed FE analysis, it has been concluded that failure occurred as a result of (local) buckling of the 22mm thick elliptical head (diameter of ±2.200mm). This paper describes the failure that occurred and the assessments performed to determine and validate the root cause of the failure. A level 3 assessment according to ASME VIII div 2 Part 5 (1) was used to determine if the vessel is still safe for operation.\",\"PeriodicalId\":384066,\"journal\":{\"name\":\"Volume 3B: Design and Analysis\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3B: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了夹套容器的失效。产品压力为16barg(内容器;D = 2200 mm),并在夹套中用导热油加热(在4bar下操作)。夹套分为不同的区域,可以单独打开和关闭。关闭后,有几个阀门没有正常打开。这导致在启动和运行期间,容器顶部的导管套堵塞。容器被加热到工作温度(±250°C),导致堵塞的导热油压力增加。所述夹套的壁厚为10mm,所述容器封头的壁厚为22mm。由于压力的增加,压力容器内壳体上的喷嘴焊缝发生了破坏。这导致热油泄漏到容器中。夹克本身变形了,但没有损坏。通过详细的有限元分析,认为破坏是由于22mm厚椭圆封头(直径±2.200mm)的(局部)屈曲引起的。本文描述了发生的故障以及为确定和验证故障的根本原因而进行的评估。根据ASME VIII div 2 Part 5(1)的3级评估来确定船舶是否仍然可以安全操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Root Cause and FFS Analysis of a Dent in a 22mm Thick Elliptical Head
This paper describes the failure of a jacketed vessel. The product pressure is 16 barg (inner vessel; D = 2200 mm) and is heated with thermal oil in the jacket (operated at 4barg). The jacket is split up in different zones which can be opened and closed separately. After a shut down, several valves were not opened properly. This resulted in blocking-in of the jacket on the top head of the vessel during the start-up and operation of the vessel. The vessel was heated to the operating temperature (±250°C), causing a pressure increase of the blocked-in thermal oil. The jacket has a wall thickness of 10 mm, and the vessel head has a wall thickness of 22 mm. Because of the pressure increase, failure occurred at a nozzle weld on the inner pressure vessel shell. This resulted in a leakage of thermal oil into the vessel. The jacket itself deformed but did not fail. Based on a detailed FE analysis, it has been concluded that failure occurred as a result of (local) buckling of the 22mm thick elliptical head (diameter of ±2.200mm). This paper describes the failure that occurred and the assessments performed to determine and validate the root cause of the failure. A level 3 assessment according to ASME VIII div 2 Part 5 (1) was used to determine if the vessel is still safe for operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Evaluation of Finite Element Modeling of Creep Deformation of Fuel Channels in CANDU® Nuclear Reactors Fitness for Service Assessment and Repair of the Liner of a High Pressure Heat Exchanger An Iterative Method for Solving Static Piping Analysis Including Friction Between Pipes and Support Development of New Design Fatigue Curves in Japan: Discussion of Best-Fit Curves Based on Large-Scale Fatigue Tests of Carbon and Low-Alloy Steel Plates Assembly of Bolted Flanged and Support Joints for Use in Elevated Temperature Exhaust Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1