在推荐系统设计中考虑供应商关系和货币化

Jan Krasnodebski, J. Dines
{"title":"在推荐系统设计中考虑供应商关系和货币化","authors":"Jan Krasnodebski, J. Dines","doi":"10.1145/2959100.2959124","DOIUrl":null,"url":null,"abstract":"E-commerce merchants need to optimize their recommendations and sort listings on multi-dimensional requirements beyond product attributes to include supplier considerations, long-term customer experience and the value of the sale to achieve long term success. Product recommendations for optimizing customer conversion can be modeled effectively with predictive analytic methodologies. However, supplier and customer experience elements are not easily modeled in the same manner. This paper outlines an algorithmic approach for these considerations from Expedia's experiences.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Considering Supplier Relations and Monetization in Designing Recommendation Systems\",\"authors\":\"Jan Krasnodebski, J. Dines\",\"doi\":\"10.1145/2959100.2959124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-commerce merchants need to optimize their recommendations and sort listings on multi-dimensional requirements beyond product attributes to include supplier considerations, long-term customer experience and the value of the sale to achieve long term success. Product recommendations for optimizing customer conversion can be modeled effectively with predictive analytic methodologies. However, supplier and customer experience elements are not easily modeled in the same manner. This paper outlines an algorithmic approach for these considerations from Expedia's experiences.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

电子商务商家需要优化他们的推荐,并根据产品属性以外的多维需求对清单进行排序,包括供应商考虑,长期客户体验和销售价值,以实现长期成功。优化客户转换的产品建议可以用预测分析方法有效地建模。然而,供应商和客户体验元素不容易以相同的方式建模。本文从Expedia的经验中概述了一种算法方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Considering Supplier Relations and Monetization in Designing Recommendation Systems
E-commerce merchants need to optimize their recommendations and sort listings on multi-dimensional requirements beyond product attributes to include supplier considerations, long-term customer experience and the value of the sale to achieve long term success. Product recommendations for optimizing customer conversion can be modeled effectively with predictive analytic methodologies. However, supplier and customer experience elements are not easily modeled in the same manner. This paper outlines an algorithmic approach for these considerations from Expedia's experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1