分散个性化联邦学习:所有个性化模式的下界和最优算法

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Computational Optimization Pub Date : 2022-01-01 DOI:10.1016/j.ejco.2022.100041
Abdurakhmon Sadiev , Ekaterina Borodich , Aleksandr Beznosikov , Darina Dvinskikh , Saveliy Chezhegov , Rachael Tappenden , Martin Takáč , Alexander Gasnikov
{"title":"分散个性化联邦学习:所有个性化模式的下界和最优算法","authors":"Abdurakhmon Sadiev ,&nbsp;Ekaterina Borodich ,&nbsp;Aleksandr Beznosikov ,&nbsp;Darina Dvinskikh ,&nbsp;Saveliy Chezhegov ,&nbsp;Rachael Tappenden ,&nbsp;Martin Takáč ,&nbsp;Alexander Gasnikov","doi":"10.1016/j.ejco.2022.100041","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the problem of decentralized, personalized federated learning. For centralized personalized federated learning, a penalty that measures the deviation from the local model and its average, is often added to the objective function. However, in a decentralized setting this penalty is expensive in terms of communication costs, so here, a different penalty — one that is built to respect the structure of the underlying computational network — is used instead. We present lower bounds on the communication and local computation costs for this problem formulation and we also present provably optimal methods for decentralized personalized federated learning. Numerical experiments are presented to demonstrate the practical performance of our methods.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100041"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S219244062200017X/pdfft?md5=e8af747bbfba4e47278ad3d8a99e3881&pid=1-s2.0-S219244062200017X-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Decentralized personalized federated learning: Lower bounds and optimal algorithm for all personalization modes\",\"authors\":\"Abdurakhmon Sadiev ,&nbsp;Ekaterina Borodich ,&nbsp;Aleksandr Beznosikov ,&nbsp;Darina Dvinskikh ,&nbsp;Saveliy Chezhegov ,&nbsp;Rachael Tappenden ,&nbsp;Martin Takáč ,&nbsp;Alexander Gasnikov\",\"doi\":\"10.1016/j.ejco.2022.100041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the problem of decentralized, personalized federated learning. For centralized personalized federated learning, a penalty that measures the deviation from the local model and its average, is often added to the objective function. However, in a decentralized setting this penalty is expensive in terms of communication costs, so here, a different penalty — one that is built to respect the structure of the underlying computational network — is used instead. We present lower bounds on the communication and local computation costs for this problem formulation and we also present provably optimal methods for decentralized personalized federated learning. Numerical experiments are presented to demonstrate the practical performance of our methods.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"10 \",\"pages\":\"Article 100041\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S219244062200017X/pdfft?md5=e8af747bbfba4e47278ad3d8a99e3881&pid=1-s2.0-S219244062200017X-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S219244062200017X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S219244062200017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了分散的、个性化的联邦学习问题。对于集中式个性化联邦学习,通常会在目标函数中添加一个度量偏离局部模型及其平均值的惩罚。然而,在去中心化设置中,就通信成本而言,这种惩罚是昂贵的,因此这里使用了另一种惩罚——一种尊重底层计算网络结构的惩罚。我们给出了该问题表述的通信和局部计算成本的下界,并提出了可证明的分散个性化联邦学习的最优方法。数值实验验证了所提方法的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized personalized federated learning: Lower bounds and optimal algorithm for all personalization modes

This paper considers the problem of decentralized, personalized federated learning. For centralized personalized federated learning, a penalty that measures the deviation from the local model and its average, is often added to the objective function. However, in a decentralized setting this penalty is expensive in terms of communication costs, so here, a different penalty — one that is built to respect the structure of the underlying computational network — is used instead. We present lower bounds on the communication and local computation costs for this problem formulation and we also present provably optimal methods for decentralized personalized federated learning. Numerical experiments are presented to demonstrate the practical performance of our methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
期刊最新文献
Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems Advances in nonlinear optimization and equilibrium problems – Special issue editorial The Marguerite Frank Award for the best EJCO paper 2023 A variable metric proximal stochastic gradient method: An application to classification problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1