通过使用蜜罐数据的行为分析来预测客户端攻击

Yaser Alosefer, O. Rana
{"title":"通过使用蜜罐数据的行为分析来预测客户端攻击","authors":"Yaser Alosefer, O. Rana","doi":"10.1109/NWESP.2011.6088149","DOIUrl":null,"url":null,"abstract":"In recent years, attackers have started to use web pages to deliver their malicious code to users. Web-based malware overcomes signature-based detection by modification of the code or using zero-day exploits. We propose a malicious activity detection method using Hidden Markov Models (HMM) alongside a client honeypot system. Our algorithm is able to detect the potential malicious behaviour of a web server based on current and past interactions between the web client and the server and can also predict possible future behaviours. The prediction algorithm learns from previously scanned behaviours recorded by a client honeypot system. We group such behaviours in order to enable common characteristics to be investigated across these groups.","PeriodicalId":271670,"journal":{"name":"2011 7th International Conference on Next Generation Web Services Practices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Predicting client-side attacks via behaviour analysis using honeypot data\",\"authors\":\"Yaser Alosefer, O. Rana\",\"doi\":\"10.1109/NWESP.2011.6088149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, attackers have started to use web pages to deliver their malicious code to users. Web-based malware overcomes signature-based detection by modification of the code or using zero-day exploits. We propose a malicious activity detection method using Hidden Markov Models (HMM) alongside a client honeypot system. Our algorithm is able to detect the potential malicious behaviour of a web server based on current and past interactions between the web client and the server and can also predict possible future behaviours. The prediction algorithm learns from previously scanned behaviours recorded by a client honeypot system. We group such behaviours in order to enable common characteristics to be investigated across these groups.\",\"PeriodicalId\":271670,\"journal\":{\"name\":\"2011 7th International Conference on Next Generation Web Services Practices\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 7th International Conference on Next Generation Web Services Practices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NWESP.2011.6088149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Next Generation Web Services Practices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NWESP.2011.6088149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

近年来,攻击者开始利用网页向用户传递恶意代码。基于web的恶意软件通过修改代码或使用零日漏洞来克服基于签名的检测。我们提出了一种使用隐马尔可夫模型(HMM)和客户端蜜罐系统的恶意活动检测方法。我们的算法能够根据web客户端和服务器之间当前和过去的交互来检测web服务器的潜在恶意行为,还可以预测未来可能的行为。预测算法从客户端蜜罐系统记录的先前扫描行为中学习。我们对这些行为进行分组,以便能够对这些组的共同特征进行调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting client-side attacks via behaviour analysis using honeypot data
In recent years, attackers have started to use web pages to deliver their malicious code to users. Web-based malware overcomes signature-based detection by modification of the code or using zero-day exploits. We propose a malicious activity detection method using Hidden Markov Models (HMM) alongside a client honeypot system. Our algorithm is able to detect the potential malicious behaviour of a web server based on current and past interactions between the web client and the server and can also predict possible future behaviours. The prediction algorithm learns from previously scanned behaviours recorded by a client honeypot system. We group such behaviours in order to enable common characteristics to be investigated across these groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BRC: Behavior reconfiguration and combination to enhance the dynamic semantic web services composition Searching the Web for Peculiar Images based on hand-made concept hierarchies Using KEEL software as a educational tool: A case of study teaching data mining Web-based research collaboration service: Crowd lifelog research case study A framework for OLTP solution - software subsystem “java based enterprise application”: Scientific approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1