N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun
{"title":"稀疏随机图的空间嵌入","authors":"N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun","doi":"10.1109/HPEC.2019.8916505","DOIUrl":null,"url":null,"abstract":"We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spaceland Embedding of Sparse Stochastic Graphs\",\"authors\":\"N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun\",\"doi\":\"10.1109/HPEC.2019.8916505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.