用于图像分割的改进二维移动窗口标准偏差Python例程的开发和并行化

Marcos R. de A. Conceição, Luis F. F. de Mendonça, C. Lentini
{"title":"用于图像分割的改进二维移动窗口标准偏差Python例程的开发和并行化","authors":"Marcos R. de A. Conceição, Luis F. F. de Mendonça, C. Lentini","doi":"10.4236/cweee.2020.93006","DOIUrl":null,"url":null,"abstract":"Two additional features are particularly useful in pixelwise satellite \ndata segmentation using neural networks: one results from local window \naveraging around each pixel (MWA) and another uses a standard deviation \nestimator (MWSD) instead of the average. While the former’s complexity has \nalready been solved to a satisfying minimum, the latter did not. This article \nproposes a new algorithm that can substitute a naive MWSD, by making the \ncomplexity of the computational process fall \nfrom O(N2n2) to O(N2n), where N is a square input array side, and n is the moving \nwindow’s side length. The Numba python \ncompiler was used to make python a competitive high-performance computing language in our optimizations. Our \nresults show efficiency benchmars","PeriodicalId":142066,"journal":{"name":"Computational Water, Energy, and Environmental Engineering","volume":"112 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Parallelization of an Improved 2D Moving Window Standard Deviation Python Routine for Image Segmentation Purposes\",\"authors\":\"Marcos R. de A. Conceição, Luis F. F. de Mendonça, C. Lentini\",\"doi\":\"10.4236/cweee.2020.93006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two additional features are particularly useful in pixelwise satellite \\ndata segmentation using neural networks: one results from local window \\naveraging around each pixel (MWA) and another uses a standard deviation \\nestimator (MWSD) instead of the average. While the former’s complexity has \\nalready been solved to a satisfying minimum, the latter did not. This article \\nproposes a new algorithm that can substitute a naive MWSD, by making the \\ncomplexity of the computational process fall \\nfrom O(N2n2) to O(N2n), where N is a square input array side, and n is the moving \\nwindow’s side length. The Numba python \\ncompiler was used to make python a competitive high-performance computing language in our optimizations. Our \\nresults show efficiency benchmars\",\"PeriodicalId\":142066,\"journal\":{\"name\":\"Computational Water, Energy, and Environmental Engineering\",\"volume\":\"112 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Water, Energy, and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cweee.2020.93006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Water, Energy, and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cweee.2020.93006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在使用神经网络进行逐像素卫星数据分割时,还有两个特别有用的特征:一个是通过每个像素周围的局部窗口平均(MWA)得出的结果,另一个是使用标准差估计(MWSD)而不是平均值。虽然前者的复杂性已经被解决到令人满意的最低限度,但后者却没有。本文提出了一种替代朴素MWSD的新算法,使计算过程的复杂度从O(N2n2)降至O(N2n),其中N为正方形输入阵列的边,N为移动窗口的边长。在我们的优化中,使用Numba python编译器使python成为具有竞争力的高性能计算语言。我们的结果显示了效率基准
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and Parallelization of an Improved 2D Moving Window Standard Deviation Python Routine for Image Segmentation Purposes
Two additional features are particularly useful in pixelwise satellite data segmentation using neural networks: one results from local window averaging around each pixel (MWA) and another uses a standard deviation estimator (MWSD) instead of the average. While the former’s complexity has already been solved to a satisfying minimum, the latter did not. This article proposes a new algorithm that can substitute a naive MWSD, by making the complexity of the computational process fall from O(N2n2) to O(N2n), where N is a square input array side, and n is the moving window’s side length. The Numba python compiler was used to make python a competitive high-performance computing language in our optimizations. Our results show efficiency benchmars
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Surface Water Potential Assessment and Water Demand Evaluation (A Case of Dabus Watershed, Blue Nile Basin) Height Detection and Analysis of Water Flowing Fractured Zone of Coal Face Contribution of Agro-Hydrological Modeling in the Evaluation of Water Availability of an Ungauged Basin Reservoir in Côte d’Ivoire: Case of the Loka Reservoir in Bouaké Performance of Water in Glass Evacuated Tube Solar Water Heater under Kenya Climatic Condition The Development and Application of CISMOD 1.0, a New Computerized Tool for Designing Wildlife Rainwater Cisterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1