Alex Ferrin, J. Larrea, Miguel Realpe, Daniel Ochoa
{"title":"城市环境中噪声点云数据中电线杆的检测","authors":"Alex Ferrin, J. Larrea, Miguel Realpe, Daniel Ochoa","doi":"10.1145/3299819.3299829","DOIUrl":null,"url":null,"abstract":"In recent years 3D urban maps have become more common, thus providing complex point clouds that include diverse urban furniture such as pole-like objects. Utility poles detection in urban environment is of particular interest for electric utility companies in order to maintain an updated inventory for better planning and management. The present study develops an automatic method for the detection of utility poles from noisy point cloud data of Guayaquil - Ecuador, where many poles are located very close to buildings, which increases the difficulty of discriminating poles, walls, columns, fences and building corners. The proposed method applies a segmentation stage based on clustering with vertical voxels and a classification stage based on neural networks.","PeriodicalId":119217,"journal":{"name":"Artificial Intelligence and Cloud Computing Conference","volume":"700 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of utility poles from noisy Point Cloud Data in Urban environments\",\"authors\":\"Alex Ferrin, J. Larrea, Miguel Realpe, Daniel Ochoa\",\"doi\":\"10.1145/3299819.3299829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years 3D urban maps have become more common, thus providing complex point clouds that include diverse urban furniture such as pole-like objects. Utility poles detection in urban environment is of particular interest for electric utility companies in order to maintain an updated inventory for better planning and management. The present study develops an automatic method for the detection of utility poles from noisy point cloud data of Guayaquil - Ecuador, where many poles are located very close to buildings, which increases the difficulty of discriminating poles, walls, columns, fences and building corners. The proposed method applies a segmentation stage based on clustering with vertical voxels and a classification stage based on neural networks.\",\"PeriodicalId\":119217,\"journal\":{\"name\":\"Artificial Intelligence and Cloud Computing Conference\",\"volume\":\"700 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Cloud Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3299819.3299829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3299819.3299829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of utility poles from noisy Point Cloud Data in Urban environments
In recent years 3D urban maps have become more common, thus providing complex point clouds that include diverse urban furniture such as pole-like objects. Utility poles detection in urban environment is of particular interest for electric utility companies in order to maintain an updated inventory for better planning and management. The present study develops an automatic method for the detection of utility poles from noisy point cloud data of Guayaquil - Ecuador, where many poles are located very close to buildings, which increases the difficulty of discriminating poles, walls, columns, fences and building corners. The proposed method applies a segmentation stage based on clustering with vertical voxels and a classification stage based on neural networks.