Si衬底上垂直堆叠InGaAs/InAlAs/InP纳米片双量子阱FinFET的性能评价

Erry Dwi Kurniawan, Yan-Ting Du, Yung-Chun Wu
{"title":"Si衬底上垂直堆叠InGaAs/InAlAs/InP纳米片双量子阱FinFET的性能评价","authors":"Erry Dwi Kurniawan, Yan-Ting Du, Yung-Chun Wu","doi":"10.1109/ICRAMET51080.2020.9298683","DOIUrl":null,"url":null,"abstract":"We study the performance of vertically stacked InGaAs/InAlAs/InP Double Quantum Well (DQW) Fin Field Effect Transistor (FinFET) on Si substrate using threedimensional Technology Computer-Aided Design (TCAD) simulation. In0.53Ga0.47As and In0.52Al0.48As are used as the quantum well channel and the barrier material, respectively. Both materials are lattice matched to the InP buffer layer material on Si substrate. The device is simulated with gate lengths (LG) of 15 nm and gate stack (Al2O3/HfO2) of 1nm/2nm (EOT~0.75nm). The simulation results reveal that by using double channel quantum well (super lattice structure) can enhance the saturation current up to 24% compared to Single Quantum Well (SQW) device. The maximum capacitance of the DQW also outperforms the SQW FinFET approximately 34%. The higher capacitance indicates the higher carrier density. The electron density of DQW prefers to localize in the InGaAs layer as the quantum well channel, thus allow greater control over the electron behavior. The device characteristics indicate that the DQW FinFET on Si substrate can be alternated to enhance the device performance for prospective high performance logic device applications.","PeriodicalId":228482,"journal":{"name":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Vertically Stacked Nanosheet InGaAs/InAlAs/InP Double Quantum Well FinFET on Si Substrate\",\"authors\":\"Erry Dwi Kurniawan, Yan-Ting Du, Yung-Chun Wu\",\"doi\":\"10.1109/ICRAMET51080.2020.9298683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the performance of vertically stacked InGaAs/InAlAs/InP Double Quantum Well (DQW) Fin Field Effect Transistor (FinFET) on Si substrate using threedimensional Technology Computer-Aided Design (TCAD) simulation. In0.53Ga0.47As and In0.52Al0.48As are used as the quantum well channel and the barrier material, respectively. Both materials are lattice matched to the InP buffer layer material on Si substrate. The device is simulated with gate lengths (LG) of 15 nm and gate stack (Al2O3/HfO2) of 1nm/2nm (EOT~0.75nm). The simulation results reveal that by using double channel quantum well (super lattice structure) can enhance the saturation current up to 24% compared to Single Quantum Well (SQW) device. The maximum capacitance of the DQW also outperforms the SQW FinFET approximately 34%. The higher capacitance indicates the higher carrier density. The electron density of DQW prefers to localize in the InGaAs layer as the quantum well channel, thus allow greater control over the electron behavior. The device characteristics indicate that the DQW FinFET on Si substrate can be alternated to enhance the device performance for prospective high performance logic device applications.\",\"PeriodicalId\":228482,\"journal\":{\"name\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMET51080.2020.9298683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET51080.2020.9298683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用三维技术计算机辅助设计(TCAD)仿真研究了垂直堆叠InGaAs/InAlAs/InP双量子阱(DQW)鳍场效应晶体管(FinFET)在Si衬底上的性能。采用In0.53Ga0.47As和In0.52Al0.48As分别作为量子阱通道和势垒材料。这两种材料都与硅衬底上的InP缓冲层材料晶格匹配。该器件的栅极长度(LG)为15 nm,栅极堆叠(Al2O3/HfO2)为1nm/2nm (EOT~0.75nm)。仿真结果表明,与单量子阱(SQW)器件相比,采用双通道量子阱(超晶格结构)可使饱和电流提高24%。DQW的最大电容也优于SQW FinFET约34%。电容越大,载流子密度越高。DQW的电子密度倾向于定位在InGaAs层作为量子阱通道,因此可以更好地控制电子行为。器件特性表明,硅衬底上的DQW FinFET可以交替使用,以提高器件性能,用于未来的高性能逻辑器件应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of Vertically Stacked Nanosheet InGaAs/InAlAs/InP Double Quantum Well FinFET on Si Substrate
We study the performance of vertically stacked InGaAs/InAlAs/InP Double Quantum Well (DQW) Fin Field Effect Transistor (FinFET) on Si substrate using threedimensional Technology Computer-Aided Design (TCAD) simulation. In0.53Ga0.47As and In0.52Al0.48As are used as the quantum well channel and the barrier material, respectively. Both materials are lattice matched to the InP buffer layer material on Si substrate. The device is simulated with gate lengths (LG) of 15 nm and gate stack (Al2O3/HfO2) of 1nm/2nm (EOT~0.75nm). The simulation results reveal that by using double channel quantum well (super lattice structure) can enhance the saturation current up to 24% compared to Single Quantum Well (SQW) device. The maximum capacitance of the DQW also outperforms the SQW FinFET approximately 34%. The higher capacitance indicates the higher carrier density. The electron density of DQW prefers to localize in the InGaAs layer as the quantum well channel, thus allow greater control over the electron behavior. The device characteristics indicate that the DQW FinFET on Si substrate can be alternated to enhance the device performance for prospective high performance logic device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning for Dengue Fever Event Detection Using Online News Screen Printed Electrochemical Sensor for Ascorbic Acid Detection Based on Nafion/Ionic Liquids/Graphene Composite on Carbon Electrodes Implementation Array-Slotted Miliwires in Artificial Dielectric Material on Waveguide Filters Te10 Mode Path Loss Model of the Maritime Wireless Communication in the Seas of Indonesia Modeling of Low-Resolution Face Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1