{"title":"混合微加工——微制造的范式转变","authors":"Xichun Luo","doi":"10.23919/IConAC.2018.8749086","DOIUrl":null,"url":null,"abstract":"Micromanufacturing has attracted great attention as micro-components/products such as micro-displays, micro-sensors, micro-batteries, etc. are becoming established in all major areas of our daily life and can already been found across the broad spectrum of application areas especially in sectors such as automotive, aerospace, photonics, renewable energy and medical instruments. These micro-components/products are usually made of multi-materials (may include hard-to-machine materials) and possess complex shaped micro-structures but demand sub-micron machining accuracy. A number of micro-machining processes is therefore, needed to deliver such components/products. The talk introduces the concept of hybrid micro-machining process which involves integration of various micro-machining processes with the purpose of improving machinability, geometrical accuracy, tool life, surface integrity, machining rate and reducing the process forces. It uses three typical hybrid micromachining processes to demonstrate the effectiveness of hybrid micromachining process in terms of machining performance and productivity. Development a new 6-axis hybrid micro machine tool and material handling system to implement the hybrid micromachining processes is also introduced. The talk concludes with the future research focus and challenges of hybrid micromachining in the new era of smart manufacturing.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid micromachining - a paradigm shift in micromanufacturing\",\"authors\":\"Xichun Luo\",\"doi\":\"10.23919/IConAC.2018.8749086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micromanufacturing has attracted great attention as micro-components/products such as micro-displays, micro-sensors, micro-batteries, etc. are becoming established in all major areas of our daily life and can already been found across the broad spectrum of application areas especially in sectors such as automotive, aerospace, photonics, renewable energy and medical instruments. These micro-components/products are usually made of multi-materials (may include hard-to-machine materials) and possess complex shaped micro-structures but demand sub-micron machining accuracy. A number of micro-machining processes is therefore, needed to deliver such components/products. The talk introduces the concept of hybrid micro-machining process which involves integration of various micro-machining processes with the purpose of improving machinability, geometrical accuracy, tool life, surface integrity, machining rate and reducing the process forces. It uses three typical hybrid micromachining processes to demonstrate the effectiveness of hybrid micromachining process in terms of machining performance and productivity. Development a new 6-axis hybrid micro machine tool and material handling system to implement the hybrid micromachining processes is also introduced. The talk concludes with the future research focus and challenges of hybrid micromachining in the new era of smart manufacturing.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8749086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid micromachining - a paradigm shift in micromanufacturing
Micromanufacturing has attracted great attention as micro-components/products such as micro-displays, micro-sensors, micro-batteries, etc. are becoming established in all major areas of our daily life and can already been found across the broad spectrum of application areas especially in sectors such as automotive, aerospace, photonics, renewable energy and medical instruments. These micro-components/products are usually made of multi-materials (may include hard-to-machine materials) and possess complex shaped micro-structures but demand sub-micron machining accuracy. A number of micro-machining processes is therefore, needed to deliver such components/products. The talk introduces the concept of hybrid micro-machining process which involves integration of various micro-machining processes with the purpose of improving machinability, geometrical accuracy, tool life, surface integrity, machining rate and reducing the process forces. It uses three typical hybrid micromachining processes to demonstrate the effectiveness of hybrid micromachining process in terms of machining performance and productivity. Development a new 6-axis hybrid micro machine tool and material handling system to implement the hybrid micromachining processes is also introduced. The talk concludes with the future research focus and challenges of hybrid micromachining in the new era of smart manufacturing.