一种新的时间序列数据拓扑嵌入方法

Sean M. Kennedy, J. Roth, James W. Scrofani
{"title":"一种新的时间序列数据拓扑嵌入方法","authors":"Sean M. Kennedy, J. Roth, James W. Scrofani","doi":"10.23919/EUSIPCO.2018.8553502","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for embedding one-dimensional, periodic time-series data into higher-dimensional topological spaces to support robust recovery of signal features via topological data analysis under noisy sampling conditions. Our method can be considered an extension of the popular time delay embedding method to a larger class of linear operators. To provide evidence for the viability of this method, we analyze the simple case of sinusoidal data in three steps. First, we discuss some of the drawbacks of the time delay embedding framework in the context of periodic, sinusoidal data. Next, we show analytically that using the Hilbert transform as an alternative embedding function for sinusoidal data overcomes these drawbacks. Finally, we provide empirical evidence of the viability of the Hilbert transform as an embedding function when the parameters of the sinusoidal data vary over time.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Method for Topological Embedding of Time-Series Data\",\"authors\":\"Sean M. Kennedy, J. Roth, James W. Scrofani\",\"doi\":\"10.23919/EUSIPCO.2018.8553502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method for embedding one-dimensional, periodic time-series data into higher-dimensional topological spaces to support robust recovery of signal features via topological data analysis under noisy sampling conditions. Our method can be considered an extension of the popular time delay embedding method to a larger class of linear operators. To provide evidence for the viability of this method, we analyze the simple case of sinusoidal data in three steps. First, we discuss some of the drawbacks of the time delay embedding framework in the context of periodic, sinusoidal data. Next, we show analytically that using the Hilbert transform as an alternative embedding function for sinusoidal data overcomes these drawbacks. Finally, we provide empirical evidence of the viability of the Hilbert transform as an embedding function when the parameters of the sinusoidal data vary over time.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的方法,将一维周期时间序列数据嵌入到高维拓扑空间中,以支持在噪声采样条件下通过拓扑数据分析对信号特征进行鲁棒恢复。我们的方法可以看作是流行的时间延迟嵌入方法的扩展,适用于更大的线性算子类。为了证明这种方法的可行性,我们分三步分析了正弦数据的简单情况。首先,我们讨论了时间延迟嵌入框架在周期性正弦数据背景下的一些缺点。接下来,我们分析地表明,使用希尔伯特变换作为正弦数据的替代嵌入函数克服了这些缺点。最后,我们提供了经验证据,证明当正弦数据的参数随时间变化时,希尔伯特变换作为嵌入函数的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Method for Topological Embedding of Time-Series Data
In this paper, we propose a novel method for embedding one-dimensional, periodic time-series data into higher-dimensional topological spaces to support robust recovery of signal features via topological data analysis under noisy sampling conditions. Our method can be considered an extension of the popular time delay embedding method to a larger class of linear operators. To provide evidence for the viability of this method, we analyze the simple case of sinusoidal data in three steps. First, we discuss some of the drawbacks of the time delay embedding framework in the context of periodic, sinusoidal data. Next, we show analytically that using the Hilbert transform as an alternative embedding function for sinusoidal data overcomes these drawbacks. Finally, we provide empirical evidence of the viability of the Hilbert transform as an embedding function when the parameters of the sinusoidal data vary over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1