Richard A. Gonçalves, C. Almeida, R. Lüders, M. Delgado
{"title":"一种基于上下文多臂强盗的多目标优化超启发式算法","authors":"Richard A. Gonçalves, C. Almeida, R. Lüders, M. Delgado","doi":"10.1109/CEC.2018.8477930","DOIUrl":null,"url":null,"abstract":"Hyper-Heuristics are high-level methodologies which select or generate heuristics. Despite their success, there are only few hyper-heuristics developed for many-objective optimization. Our approach, namely MOEA/D-LinUCB, combines the MOEA/D framework with a new selection hyper-heuristic to solve many-objective problems. It uses an innovative Contextual Multi-Armed Bandit (MAB) to determine the low level heuristic (Differential Evolution mutation strategy) that should be applied to each individual during MOEA/D execution. The main advantage of using Contextual MAB is to include information about the current search state into the selection procedure. We tested MOEA/D-LinUCB on a well established set of 9 instances from the WFG benchmark for a number of objectives varying from 3 to 20. The IGD indicator and Kruskal-Wallis and Dunn-Sidak's statistical tests are applied to evaluate the algorithm performance. Four variants of the proposed algorithm are compared with each other to define a proper configuration. A properly configured MOEA/D-LinUCB is then compared with MOEA/D-FRRMAB and MOEAID-DRA-two well-known MOEA/D-based algorithms. Results show that MOEA/D-LinUCB performs well, particularly when the number of objectives is 10 or greater. Therefore, MOEA/D-LinUCB can be considered as a promising many-objective Hyper-Heuristic.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A New Hyper-Heuristic Based on a Contextual Multi-Armed Bandit for Many-Objective Optimization\",\"authors\":\"Richard A. Gonçalves, C. Almeida, R. Lüders, M. Delgado\",\"doi\":\"10.1109/CEC.2018.8477930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyper-Heuristics are high-level methodologies which select or generate heuristics. Despite their success, there are only few hyper-heuristics developed for many-objective optimization. Our approach, namely MOEA/D-LinUCB, combines the MOEA/D framework with a new selection hyper-heuristic to solve many-objective problems. It uses an innovative Contextual Multi-Armed Bandit (MAB) to determine the low level heuristic (Differential Evolution mutation strategy) that should be applied to each individual during MOEA/D execution. The main advantage of using Contextual MAB is to include information about the current search state into the selection procedure. We tested MOEA/D-LinUCB on a well established set of 9 instances from the WFG benchmark for a number of objectives varying from 3 to 20. The IGD indicator and Kruskal-Wallis and Dunn-Sidak's statistical tests are applied to evaluate the algorithm performance. Four variants of the proposed algorithm are compared with each other to define a proper configuration. A properly configured MOEA/D-LinUCB is then compared with MOEA/D-FRRMAB and MOEAID-DRA-two well-known MOEA/D-based algorithms. Results show that MOEA/D-LinUCB performs well, particularly when the number of objectives is 10 or greater. Therefore, MOEA/D-LinUCB can be considered as a promising many-objective Hyper-Heuristic.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Hyper-Heuristic Based on a Contextual Multi-Armed Bandit for Many-Objective Optimization
Hyper-Heuristics are high-level methodologies which select or generate heuristics. Despite their success, there are only few hyper-heuristics developed for many-objective optimization. Our approach, namely MOEA/D-LinUCB, combines the MOEA/D framework with a new selection hyper-heuristic to solve many-objective problems. It uses an innovative Contextual Multi-Armed Bandit (MAB) to determine the low level heuristic (Differential Evolution mutation strategy) that should be applied to each individual during MOEA/D execution. The main advantage of using Contextual MAB is to include information about the current search state into the selection procedure. We tested MOEA/D-LinUCB on a well established set of 9 instances from the WFG benchmark for a number of objectives varying from 3 to 20. The IGD indicator and Kruskal-Wallis and Dunn-Sidak's statistical tests are applied to evaluate the algorithm performance. Four variants of the proposed algorithm are compared with each other to define a proper configuration. A properly configured MOEA/D-LinUCB is then compared with MOEA/D-FRRMAB and MOEAID-DRA-two well-known MOEA/D-based algorithms. Results show that MOEA/D-LinUCB performs well, particularly when the number of objectives is 10 or greater. Therefore, MOEA/D-LinUCB can be considered as a promising many-objective Hyper-Heuristic.