基于机器人视觉深度学习的茄类作物病害检测

A. N. Hidayah, Syafeeza Ahmad Radzi, Norazlina Abdul Razak, Wira Hidayat Bin Mohd Saad, Y. Wong, A. A. Naja
{"title":"基于机器人视觉深度学习的茄类作物病害检测","authors":"A. N. Hidayah, Syafeeza Ahmad Radzi, Norazlina Abdul Razak, Wira Hidayat Bin Mohd Saad, Y. Wong, A. A. Naja","doi":"10.18196/jrc.v3i6.15948","DOIUrl":null,"url":null,"abstract":"Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision\",\"authors\":\"A. N. Hidayah, Syafeeza Ahmad Radzi, Norazlina Abdul Razak, Wira Hidayat Bin Mohd Saad, Y. Wong, A. A. Naja\",\"doi\":\"10.18196/jrc.v3i6.15948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v3i6.15948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v3i6.15948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统上,农民通过人工识别和监测植物病害、营养缺乏、控制灌溉以及控制化肥和农药,从早期生长阶段到成熟收获阶段管理作物。由于多种相似的作物病害,农民也很难用肉眼检测作物病害。确定正确的病害是至关重要的,因为它可以提高作物生产的质量和数量。随着人工智能(AI)技术的出现,所有作物管理任务都可以通过模仿农民能力的机器人实现自动化。然而,设计一个具有人类能力的机器人,特别是在实时检测作物病害方面,是另一个需要考虑的挑战。其他的研究工作集中在提高平均精度上,目前报道的最好结果是YOLOv5的平均精度(mAP)达到93%。本文主要研究了基于卷积神经网络(CNN)结构的目标检测,用于机器人视觉检测茄类作物病害。这项研究的贡献包括报告了发展的具体情况,并为研究中出现的问题提出了解决方案。此外,本研究的输出有望成为机器人视觉的算法。本研究使用了四种作物(番茄、马铃薯、茄子和辣椒)的图像,包括23类叶片和果实感染的健康和患病作物。使用的数据集结合了公共数据集(PlantVillage)和自收集样本。所有23个类的总数据集是16580张图像,分为三个部分:训练集、验证集和测试集。用于训练的数据集占总数据集的88%(15000张图像),8%的数据集执行验证过程(1400张图像),其余4%的数据集用于测试过程(699张图像)。YOLOv5在94.2% mAP方面的性能更加稳健,并且速度略快于Scaled-YOLOv4。这种基于目标检测的方法已被证明是一种有前途的解决方案,可以有效地实时检测作物病害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision
Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
期刊最新文献
Efficient Path Planning Algorithm for Mobile Robots Performing Floor Cleaning Like Operations Adaptive Cruise Control of the Autonomous Vehicle Based on Sliding Mode Controller Using Arduino and Ultrasonic Sensor Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology Using Learning Focal Point Algorithm to Classify Emotional Intelligence Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1