带亚临界调节杆的加速器驱动系统光束窗设计研究

T. Sugawara, Y. Eguchi, K. Tsujimoto, H. Obayashi, H. Iwamoto, H. Matsuda
{"title":"带亚临界调节杆的加速器驱动系统光束窗设计研究","authors":"T. Sugawara, Y. Eguchi, K. Tsujimoto, H. Obayashi, H. Iwamoto, H. Matsuda","doi":"10.1115/ICONE26-81233","DOIUrl":null,"url":null,"abstract":"Engineering feasibility of the beam window is one of the design issues in the accelerator-driven system (ADS). This study aims to perform the coupled analysis for the feasible beam window concept. To mitigate the design condition, namely to reduce the required proton beam current, subcriticality adjustment rod (SAR) was installed to the ADS core. The burnup analysis was performed for the ADS core with SAR and the results indicated that the maximum proton beam current during the burnup cycle was reduced from 20 to 13.5 mA.\n Based on the burnup analysis result, the coupled analysis; particle transport, thermal hydraulics and structural analyses, was performed. As the final result, the following design; the hemisphere shape, the outer radius = 180 mm, the thickness at the top of the beam window = 1.5 mm, and the factor of safety for the buckling = 3.8, was presented. The buckling pressure was almost same as the previous one and more feasible beam window concept was presented through this study.","PeriodicalId":354697,"journal":{"name":"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Study of Beam Window for Accelerator-Driven System With Subcriticality Adjustment Rod\",\"authors\":\"T. Sugawara, Y. Eguchi, K. Tsujimoto, H. Obayashi, H. Iwamoto, H. Matsuda\",\"doi\":\"10.1115/ICONE26-81233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering feasibility of the beam window is one of the design issues in the accelerator-driven system (ADS). This study aims to perform the coupled analysis for the feasible beam window concept. To mitigate the design condition, namely to reduce the required proton beam current, subcriticality adjustment rod (SAR) was installed to the ADS core. The burnup analysis was performed for the ADS core with SAR and the results indicated that the maximum proton beam current during the burnup cycle was reduced from 20 to 13.5 mA.\\n Based on the burnup analysis result, the coupled analysis; particle transport, thermal hydraulics and structural analyses, was performed. As the final result, the following design; the hemisphere shape, the outer radius = 180 mm, the thickness at the top of the beam window = 1.5 mm, and the factor of safety for the buckling = 3.8, was presented. The buckling pressure was almost same as the previous one and more feasible beam window concept was presented through this study.\",\"PeriodicalId\":354697,\"journal\":{\"name\":\"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光束窗的工程可行性是加速器驱动系统(ADS)的设计问题之一。本研究旨在对可行梁窗概念进行耦合分析。为了减轻设计条件,即减少所需的质子束电流,在ADS核心安装了亚临界调节棒(SAR)。利用SAR对ADS核心进行了燃耗分析,结果表明,在燃耗周期内,最大质子束电流从20 mA降低到13.5 mA。在燃耗分析结果的基础上,进行了耦合分析;进行了颗粒输运、热工力学和结构分析。作为最终的结果,设计如下;给出了外半径为180 mm、梁窗顶部厚度为1.5 mm、屈曲安全系数为3.8的半球形结构。屈曲压力与之前的计算结果基本一致,提出了更可行的梁窗概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design Study of Beam Window for Accelerator-Driven System With Subcriticality Adjustment Rod
Engineering feasibility of the beam window is one of the design issues in the accelerator-driven system (ADS). This study aims to perform the coupled analysis for the feasible beam window concept. To mitigate the design condition, namely to reduce the required proton beam current, subcriticality adjustment rod (SAR) was installed to the ADS core. The burnup analysis was performed for the ADS core with SAR and the results indicated that the maximum proton beam current during the burnup cycle was reduced from 20 to 13.5 mA. Based on the burnup analysis result, the coupled analysis; particle transport, thermal hydraulics and structural analyses, was performed. As the final result, the following design; the hemisphere shape, the outer radius = 180 mm, the thickness at the top of the beam window = 1.5 mm, and the factor of safety for the buckling = 3.8, was presented. The buckling pressure was almost same as the previous one and more feasible beam window concept was presented through this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the Neutronics of a Molten Salt Fast Reactor Using DYN3D-MG for the Investigation of the Application of Frozen Wall Technology Conceptual Design and Neutronics/Thermal-Hydraulic Coupling Optimization Analyses of Two Typical Helium Cooled Solid Breeder Blanket Modules for CFETR Phase II The Backfit Rule’s Compliance Exception A Framework and Model for Assessing the Design Point Performance, Off-Design Point Performance, Control, Economics and Risks of Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants AFCEN RCC-F: A New Standard for the Fire Protection Design of New Built Light Water Nuclear Power Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1