使用主动近红外照明的自动虹膜分割

C. Morimoto, T. T. Santos, Adriano S. Muniz
{"title":"使用主动近红外照明的自动虹膜分割","authors":"C. Morimoto, T. T. Santos, Adriano S. Muniz","doi":"10.1109/SIBGRAPI.2005.14","DOIUrl":null,"url":null,"abstract":"This paper introduces a fast, robust and accurate iris segmentation technique based on active lighting. The geometry of the light sources, a single camera and the eye facilitates the detection of the pupil and the automatic selection of the most appropriate image for biometric identification from the video stream, minimizing the effects of noise, distortion and occlusion during the image acquisition process. Two near infrared (NIR) light sources (that are invisible to the human eye) are synchronized with the video signal. One of the light sources is placed near the optical axis of the camera, and generates a bright pupil image. The second light is placed off-axis, generating dark pupil images. These two images can be easily combined to segment the pupil region, and the corneal reflection of the light sources can be used to select best quality images. The pupil position is then used to segment the iris and eyelids using a coarse-to-fine strategy. Experimental results with a real-time prototype show the quality of the iris segmentation.","PeriodicalId":193103,"journal":{"name":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Automatic Iris Segmentation Using Active Near Infra Red Lighting\",\"authors\":\"C. Morimoto, T. T. Santos, Adriano S. Muniz\",\"doi\":\"10.1109/SIBGRAPI.2005.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a fast, robust and accurate iris segmentation technique based on active lighting. The geometry of the light sources, a single camera and the eye facilitates the detection of the pupil and the automatic selection of the most appropriate image for biometric identification from the video stream, minimizing the effects of noise, distortion and occlusion during the image acquisition process. Two near infrared (NIR) light sources (that are invisible to the human eye) are synchronized with the video signal. One of the light sources is placed near the optical axis of the camera, and generates a bright pupil image. The second light is placed off-axis, generating dark pupil images. These two images can be easily combined to segment the pupil region, and the corneal reflection of the light sources can be used to select best quality images. The pupil position is then used to segment the iris and eyelids using a coarse-to-fine strategy. Experimental results with a real-time prototype show the quality of the iris segmentation.\",\"PeriodicalId\":193103,\"journal\":{\"name\":\"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)\",\"volume\":\"246 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2005.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2005.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

介绍了一种基于有源光照的快速、鲁棒、准确的虹膜分割技术。光源、单个摄像头和眼睛的几何形状有助于检测瞳孔,并从视频流中自动选择最合适的图像进行生物特征识别,最大限度地减少图像采集过程中的噪声、失真和遮挡的影响。两个近红外(NIR)光源(人眼不可见)与视频信号同步。其中一个光源被放置在相机的光轴附近,并产生明亮的瞳孔图像。第二盏灯离轴放置,产生暗瞳图像。这两幅图像可以很容易地结合起来分割瞳孔区域,并且可以利用光源的角膜反射来选择最优质量的图像。然后瞳孔的位置被用来分割虹膜和眼睑,使用一个从粗到细的策略。实时样机的实验结果表明了虹膜分割的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Iris Segmentation Using Active Near Infra Red Lighting
This paper introduces a fast, robust and accurate iris segmentation technique based on active lighting. The geometry of the light sources, a single camera and the eye facilitates the detection of the pupil and the automatic selection of the most appropriate image for biometric identification from the video stream, minimizing the effects of noise, distortion and occlusion during the image acquisition process. Two near infrared (NIR) light sources (that are invisible to the human eye) are synchronized with the video signal. One of the light sources is placed near the optical axis of the camera, and generates a bright pupil image. The second light is placed off-axis, generating dark pupil images. These two images can be easily combined to segment the pupil region, and the corneal reflection of the light sources can be used to select best quality images. The pupil position is then used to segment the iris and eyelids using a coarse-to-fine strategy. Experimental results with a real-time prototype show the quality of the iris segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Formation of Multifrequency Vibro-Acoustography: Theory and Computational Simulations Combining Methods to Stabilize and Increase Performance of Neural Network-Based Classifiers CHF: A Scalable Topological Data Structure for Tetrahedral Meshes A Calligraphic Interface for Interactive Free-Form Modeling with Large Datasets A Collision Detection and Response Scheme for Simplified Physically Based Animation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1