基于时频点角度分布的多源DOA估计

Liang Tao, Mao-shen Jia, Lu Li
{"title":"基于时频点角度分布的多源DOA估计","authors":"Liang Tao, Mao-shen Jia, Lu Li","doi":"10.1145/3581807.3581861","DOIUrl":null,"url":null,"abstract":"Direction-of-arrival (DOA) estimation method based on single-source zone (SSZ) detection, using the sparsity of speech signal, which transforms the multiple sources localization into single source localization. However, there are many time-frequency (TF) points whose direction information are far away from the true DOA in the detected SSZ, these points may disturb the localization performance. Aiming this issue, a DOA estimation of multiple sources based on the angle distribution of TF points is proposed in this paper. Firstly, the SSZs are detected through the recorded signal of sound field microphone. Secondly, the optimized single-source zone (OSSZ) can be acquired by removing the outliers based on the angle distribution of the TF points in the detected SSZ. Thirdly, DOA histogram can be obtained using the TF points in OSSZ, then the envelop of the DOA histogram is gained by kernel density estimation. Finally, peak search is adopted to obtain the DOA estimates and number of sources. The experiment results show that the proposed method can achieve better localization performance than SSZ-based method under medium and high reverberation conditions.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DOA Estimation of Multiple Sources based on the Angle Distribution of Time-frequency Points in Single-source Zone\",\"authors\":\"Liang Tao, Mao-shen Jia, Lu Li\",\"doi\":\"10.1145/3581807.3581861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direction-of-arrival (DOA) estimation method based on single-source zone (SSZ) detection, using the sparsity of speech signal, which transforms the multiple sources localization into single source localization. However, there are many time-frequency (TF) points whose direction information are far away from the true DOA in the detected SSZ, these points may disturb the localization performance. Aiming this issue, a DOA estimation of multiple sources based on the angle distribution of TF points is proposed in this paper. Firstly, the SSZs are detected through the recorded signal of sound field microphone. Secondly, the optimized single-source zone (OSSZ) can be acquired by removing the outliers based on the angle distribution of the TF points in the detected SSZ. Thirdly, DOA histogram can be obtained using the TF points in OSSZ, then the envelop of the DOA histogram is gained by kernel density estimation. Finally, peak search is adopted to obtain the DOA estimates and number of sources. The experiment results show that the proposed method can achieve better localization performance than SSZ-based method under medium and high reverberation conditions.\",\"PeriodicalId\":292813,\"journal\":{\"name\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581807.3581861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于单源区域(SSZ)检测的DOA估计方法,利用语音信号的稀疏性,将多源定位转化为单源定位。然而,在被检测的SSZ中存在许多时频点,它们的方向信息与真实DOA相差甚远,这些点可能会干扰定位性能。针对这一问题,本文提出了一种基于TF点角度分布的多源DOA估计方法。首先,通过声场传声器记录的信号来检测ssz。其次,根据检测到的单源区域内TF点的角度分布,去除异常值,得到优化的单源区域(OSSZ);第三,利用OSSZ中的TF点得到DOA直方图,然后通过核密度估计得到DOA直方图的包络。最后,采用峰值搜索方法,得到信号的DOA估计值和信源数量。实验结果表明,在中、高混响条件下,该方法比基于ssz的方法具有更好的定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DOA Estimation of Multiple Sources based on the Angle Distribution of Time-frequency Points in Single-source Zone
Direction-of-arrival (DOA) estimation method based on single-source zone (SSZ) detection, using the sparsity of speech signal, which transforms the multiple sources localization into single source localization. However, there are many time-frequency (TF) points whose direction information are far away from the true DOA in the detected SSZ, these points may disturb the localization performance. Aiming this issue, a DOA estimation of multiple sources based on the angle distribution of TF points is proposed in this paper. Firstly, the SSZs are detected through the recorded signal of sound field microphone. Secondly, the optimized single-source zone (OSSZ) can be acquired by removing the outliers based on the angle distribution of the TF points in the detected SSZ. Thirdly, DOA histogram can be obtained using the TF points in OSSZ, then the envelop of the DOA histogram is gained by kernel density estimation. Finally, peak search is adopted to obtain the DOA estimates and number of sources. The experiment results show that the proposed method can achieve better localization performance than SSZ-based method under medium and high reverberation conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Channel Attention for Chinese Scene Text Recognition Vehicle Re-identification Based on Multi-Scale Attention Feature Fusion Comparative Study on EEG Feature Recognition based on Deep Belief Network VA-TransUNet: A U-shaped Medical Image Segmentation Network with Visual Attention Traffic Flow Forecasting Research Based on Delay Reconstruction and GRU-SVR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1