在分布式内存中按比例计算无比例图的三角形计数

R. Pearce
{"title":"在分布式内存中按比例计算无比例图的三角形计数","authors":"R. Pearce","doi":"10.1109/HPEC.2017.8091051","DOIUrl":null,"url":null,"abstract":"Triangle counting has long been a challenge problem for sparse graphs containing high-degree \"hub\" vertices that exist in many real-world scenarios. These high-degree vertices create a quadratic number of wedges, or 2-edge paths, which for brute force algorithms require closure checking or wedge checks. Our work-in-progress builds on existing heuristics for pruning the number of wedge checks by ordering based on degree and other simple metrics. Such heuristics can dramatically reduce the number of required wedge checks for exact triangle counting for both real and synthetic scale-free graphs. Our triangle counting algorithm is implemented using HavoqGT, an asynchronous vertex-centric graph analytics framework for distributed memory. We present a brief experimental evaluation on two large real scale-free graphs: a 128B edge web-graph and a 1.4B edge twitter follower graph, and a weak scaling study on synthetic Graph500 RMAT graphs up to 274.9 billion edges.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Triangle counting for scale-free graphs at scale in distributed memory\",\"authors\":\"R. Pearce\",\"doi\":\"10.1109/HPEC.2017.8091051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triangle counting has long been a challenge problem for sparse graphs containing high-degree \\\"hub\\\" vertices that exist in many real-world scenarios. These high-degree vertices create a quadratic number of wedges, or 2-edge paths, which for brute force algorithms require closure checking or wedge checks. Our work-in-progress builds on existing heuristics for pruning the number of wedge checks by ordering based on degree and other simple metrics. Such heuristics can dramatically reduce the number of required wedge checks for exact triangle counting for both real and synthetic scale-free graphs. Our triangle counting algorithm is implemented using HavoqGT, an asynchronous vertex-centric graph analytics framework for distributed memory. We present a brief experimental evaluation on two large real scale-free graphs: a 128B edge web-graph and a 1.4B edge twitter follower graph, and a weak scaling study on synthetic Graph500 RMAT graphs up to 274.9 billion edges.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

三角形计数长期以来一直是包含高度“枢纽”顶点的稀疏图的挑战问题,这些稀疏图存在于许多现实场景中。这些高度顶点创建了二次数量的楔形,或2边路径,对于蛮力算法来说,这需要闭合检查或楔形检查。我们正在进行的工作建立在现有的启发式方法上,通过基于程度和其他简单指标的排序来减少楔形检查的数量。这种启发式方法可以大大减少对真实和合成无标度图进行精确三角形计数所需的楔形检查次数。我们的三角形计数算法是使用HavoqGT实现的,HavoqGT是一个异步的以顶点为中心的分布式内存图形分析框架。我们对两个大型真实无标度图(128B边缘web图和14b边缘twitter follower图)进行了简要的实验评估,并对合成Graph500 RMAT图进行了弱标度研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Triangle counting for scale-free graphs at scale in distributed memory
Triangle counting has long been a challenge problem for sparse graphs containing high-degree "hub" vertices that exist in many real-world scenarios. These high-degree vertices create a quadratic number of wedges, or 2-edge paths, which for brute force algorithms require closure checking or wedge checks. Our work-in-progress builds on existing heuristics for pruning the number of wedge checks by ordering based on degree and other simple metrics. Such heuristics can dramatically reduce the number of required wedge checks for exact triangle counting for both real and synthetic scale-free graphs. Our triangle counting algorithm is implemented using HavoqGT, an asynchronous vertex-centric graph analytics framework for distributed memory. We present a brief experimental evaluation on two large real scale-free graphs: a 128B edge web-graph and a 1.4B edge twitter follower graph, and a weak scaling study on synthetic Graph500 RMAT graphs up to 274.9 billion edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1