基于非局部卷积网络的光流估计

Liping Zhang, Zongqing Lu
{"title":"基于非局部卷积网络的光流估计","authors":"Liping Zhang, Zongqing Lu","doi":"10.1145/3404555.3404616","DOIUrl":null,"url":null,"abstract":"Convolutional neural network(CNN) models for optical flow estimation based on coarse-to-fine method are usually difficult to obtain accurate estimates of large displacement motions in the rough layer, so that the estimation error will be passed to the final estimation result. This article proposes an effective convolutional neural network model for optical flow estimation called NTFlow. NTFlow uses a non-local convolutional layer to obtain the correlation of the full feature map, and constrains the estimate of the larger error in the loss function. Experiment results show that our network can get accurate estimation results on public data sets, and the proposed loss function is very robust.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Flow Estimation Using a Non-Local Convolutional Network\",\"authors\":\"Liping Zhang, Zongqing Lu\",\"doi\":\"10.1145/3404555.3404616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural network(CNN) models for optical flow estimation based on coarse-to-fine method are usually difficult to obtain accurate estimates of large displacement motions in the rough layer, so that the estimation error will be passed to the final estimation result. This article proposes an effective convolutional neural network model for optical flow estimation called NTFlow. NTFlow uses a non-local convolutional layer to obtain the correlation of the full feature map, and constrains the estimate of the larger error in the loss function. Experiment results show that our network can get accurate estimation results on public data sets, and the proposed loss function is very robust.\",\"PeriodicalId\":220526,\"journal\":{\"name\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404555.3404616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于粗到精方法的卷积神经网络(CNN)光流估计模型通常难以获得粗层中大位移运动的准确估计,从而将估计误差传递给最终估计结果。本文提出了一种有效的卷积神经网络光流估计模型NTFlow。NTFlow使用非局部卷积层来获得全特征映射的相关性,并约束损失函数中较大误差的估计。实验结果表明,我们的网络可以在公共数据集上得到准确的估计结果,并且所提出的损失函数具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Flow Estimation Using a Non-Local Convolutional Network
Convolutional neural network(CNN) models for optical flow estimation based on coarse-to-fine method are usually difficult to obtain accurate estimates of large displacement motions in the rough layer, so that the estimation error will be passed to the final estimation result. This article proposes an effective convolutional neural network model for optical flow estimation called NTFlow. NTFlow uses a non-local convolutional layer to obtain the correlation of the full feature map, and constrains the estimate of the larger error in the loss function. Experiment results show that our network can get accurate estimation results on public data sets, and the proposed loss function is very robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1