TCP/AQM无线网络中PID控制器调优的花授粉算法

Suad Ali Eissa, S. W. Shneen, Ekbal Hussain Ali
{"title":"TCP/AQM无线网络中PID控制器调优的花授粉算法","authors":"Suad Ali Eissa, S. W. Shneen, Ekbal Hussain Ali","doi":"10.18196/jrc.v4i2.17533","DOIUrl":null,"url":null,"abstract":"The current study aims to conduct a simulation that is useful in developing an appropriate design that addresses the problem of congestion in the Internet network through controlling the queue of the router. The simulation is conducted through the proposed model for simulation with different control systems that help in raising the quality of performance such as traditional Proportional Integral Derivative (PID) and advanced optimal by Flower Pollination Algorithm  (FPA). It depends for Transmission Control Protocol/ Active Queue Management( TCP/AQM )simulation model for a linear system and another non-linear system. To adjust the network work and raise the level of performance, different control systems were chosen, taking into account all the things that appear through conducting experiments and for different purposes. One of the most important things that must be taken into consideration is the system disturbances as a result of the volume and values of the data, causing congestion . It was shown through the results of the experiments that were conducted considering the cases of the linear and nonlinear system to pass data traffic in the network and by adopting the different techniques of the control units, the preference of optimizasion systems over the traditional ones, as well as the preference of the traditional over  without control in close loop, is the improvement of the performance of linear systems compared to the open and closed system without control. The simulation results showed that very clear the superiority of the optimization by FPA-PID controller over the conventional system (PID)  , as well as very clear the superiority of  the traditional system (PID)over closed system without control and open loop system.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flower Pollination Algorithm to Tune PID Controller of TCP/AQM Wireless Networks\",\"authors\":\"Suad Ali Eissa, S. W. Shneen, Ekbal Hussain Ali\",\"doi\":\"10.18196/jrc.v4i2.17533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study aims to conduct a simulation that is useful in developing an appropriate design that addresses the problem of congestion in the Internet network through controlling the queue of the router. The simulation is conducted through the proposed model for simulation with different control systems that help in raising the quality of performance such as traditional Proportional Integral Derivative (PID) and advanced optimal by Flower Pollination Algorithm  (FPA). It depends for Transmission Control Protocol/ Active Queue Management( TCP/AQM )simulation model for a linear system and another non-linear system. To adjust the network work and raise the level of performance, different control systems were chosen, taking into account all the things that appear through conducting experiments and for different purposes. One of the most important things that must be taken into consideration is the system disturbances as a result of the volume and values of the data, causing congestion . It was shown through the results of the experiments that were conducted considering the cases of the linear and nonlinear system to pass data traffic in the network and by adopting the different techniques of the control units, the preference of optimizasion systems over the traditional ones, as well as the preference of the traditional over  without control in close loop, is the improvement of the performance of linear systems compared to the open and closed system without control. The simulation results showed that very clear the superiority of the optimization by FPA-PID controller over the conventional system (PID)  , as well as very clear the superiority of  the traditional system (PID)over closed system without control and open loop system.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v4i2.17533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v4i2.17533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是进行一个模拟,该模拟有助于开发一个适当的设计,通过控制路由器的队列来解决互联网网络中的拥塞问题。通过所提出的模型对不同的控制系统进行仿真,如传统的比例积分导数(PID)和花卉授粉算法(FPA)的高级优化,有助于提高性能质量。它取决于传输控制协议/主动队列管理(TCP/AQM)仿真模型对一个线性系统和另一个非线性系统。为了调整网络工作和提高性能水平,考虑到通过进行实验和不同目的出现的所有事情,选择了不同的控制系统。必须考虑的最重要的事情之一是由于数据量和数据值引起的系统干扰,从而导致拥塞。实验结果表明,在考虑线性和非线性系统在网络中传递数据流量的情况下,通过采用不同的控制单元技术,优化系统优于传统系统,以及传统系统优于无控制的闭环系统,是线性系统优于无控制的开放和封闭系统的性能。仿真结果表明,FPA-PID控制器的优化优于传统系统(PID),也明显优于传统系统(PID),优于无控制的封闭系统和开环系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flower Pollination Algorithm to Tune PID Controller of TCP/AQM Wireless Networks
The current study aims to conduct a simulation that is useful in developing an appropriate design that addresses the problem of congestion in the Internet network through controlling the queue of the router. The simulation is conducted through the proposed model for simulation with different control systems that help in raising the quality of performance such as traditional Proportional Integral Derivative (PID) and advanced optimal by Flower Pollination Algorithm  (FPA). It depends for Transmission Control Protocol/ Active Queue Management( TCP/AQM )simulation model for a linear system and another non-linear system. To adjust the network work and raise the level of performance, different control systems were chosen, taking into account all the things that appear through conducting experiments and for different purposes. One of the most important things that must be taken into consideration is the system disturbances as a result of the volume and values of the data, causing congestion . It was shown through the results of the experiments that were conducted considering the cases of the linear and nonlinear system to pass data traffic in the network and by adopting the different techniques of the control units, the preference of optimizasion systems over the traditional ones, as well as the preference of the traditional over  without control in close loop, is the improvement of the performance of linear systems compared to the open and closed system without control. The simulation results showed that very clear the superiority of the optimization by FPA-PID controller over the conventional system (PID)  , as well as very clear the superiority of  the traditional system (PID)over closed system without control and open loop system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
期刊最新文献
Efficient Path Planning Algorithm for Mobile Robots Performing Floor Cleaning Like Operations Adaptive Cruise Control of the Autonomous Vehicle Based on Sliding Mode Controller Using Arduino and Ultrasonic Sensor Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology Using Learning Focal Point Algorithm to Classify Emotional Intelligence Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1