汽车雷达目标仿真道路场景的数据驱动生成

Carlos Moreno Leon, M. González-Huici, T. Dallmann
{"title":"汽车雷达目标仿真道路场景的数据驱动生成","authors":"Carlos Moreno Leon, M. González-Huici, T. Dallmann","doi":"10.1109/ICMIM.2019.8726648","DOIUrl":null,"url":null,"abstract":"One important aspect in the design of a generic radar target simulator is the level of complexity incorporated in the generation of scenarios. The trade-off between the expected fidelity in the generation of scenarios and the computational constraints in the target simulation system raises alternatives to model-based approaches. In this paper we present a data-driven method for the generation of road scenarios in the context of automotive radar target simulation. The method characterizes the scenarios relying on radar recordings and prior information on the testing set-up. The recorded data is processed in order to play back the scenario with a radar target simulator. This is relevant, for instance, so that certain functionalities of the radar under test can be evaluated and tuned in reproducible conditions. The presented data-driven method is applied to one particular road scenario and validated in simulation experiments.","PeriodicalId":225972,"journal":{"name":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-driven Generation of Road Scenarios for Radar Target Simulation in Automotive Context\",\"authors\":\"Carlos Moreno Leon, M. González-Huici, T. Dallmann\",\"doi\":\"10.1109/ICMIM.2019.8726648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One important aspect in the design of a generic radar target simulator is the level of complexity incorporated in the generation of scenarios. The trade-off between the expected fidelity in the generation of scenarios and the computational constraints in the target simulation system raises alternatives to model-based approaches. In this paper we present a data-driven method for the generation of road scenarios in the context of automotive radar target simulation. The method characterizes the scenarios relying on radar recordings and prior information on the testing set-up. The recorded data is processed in order to play back the scenario with a radar target simulator. This is relevant, for instance, so that certain functionalities of the radar under test can be evaluated and tuned in reproducible conditions. The presented data-driven method is applied to one particular road scenario and validated in simulation experiments.\",\"PeriodicalId\":225972,\"journal\":{\"name\":\"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIM.2019.8726648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2019.8726648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通用雷达目标模拟器设计的一个重要方面是场景生成的复杂性。在场景生成中的预期保真度和目标仿真系统中的计算约束之间的权衡提出了基于模型的方法的替代方案。本文提出了一种基于数据驱动的汽车雷达目标仿真道路场景生成方法。该方法根据雷达记录和测试装置的先验信息来描述场景。记录的数据经过处理,以便用雷达目标模拟器回放场景。例如,这是相关的,以便在可重复的条件下评估和调整被测雷达的某些功能。将该方法应用于某一特定道路场景,并在仿真实验中进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven Generation of Road Scenarios for Radar Target Simulation in Automotive Context
One important aspect in the design of a generic radar target simulator is the level of complexity incorporated in the generation of scenarios. The trade-off between the expected fidelity in the generation of scenarios and the computational constraints in the target simulation system raises alternatives to model-based approaches. In this paper we present a data-driven method for the generation of road scenarios in the context of automotive radar target simulation. The method characterizes the scenarios relying on radar recordings and prior information on the testing set-up. The recorded data is processed in order to play back the scenario with a radar target simulator. This is relevant, for instance, so that certain functionalities of the radar under test can be evaluated and tuned in reproducible conditions. The presented data-driven method is applied to one particular road scenario and validated in simulation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering of Closely Adjacent Extended Objects in Radar Images using Velocity Profile Analysis A Radar Measurement Setup with a Ground Truth System for Micro-Doppler Human Movements Direct Digital Modulation and RFDAC for Generation of Frequency Ramps in FMCW Radar Chirp-Sequence-Based Imaging Using a Network of Distributed Single-Channel Radar Sensors ICMIM 2019 Organizing Committee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1