基于迭代调整误差阈值的并行神经学习

T. Hong, Jyh-Jong Lee
{"title":"基于迭代调整误差阈值的并行神经学习","authors":"T. Hong, Jyh-Jong Lee","doi":"10.1109/ICPADS.1998.741026","DOIUrl":null,"url":null,"abstract":"We first propose a modified backpropagation learning algorithm that incrementally decreases the error threshold by half in order to process training instances with large weight changes as quickly as possible. This modified backpropagation learning algorithm is then parallelized using the single-channel broadcast communication model to n processors, where n is the number of training instances. Finally, the parallel backpropagation learning algorithm is modified for execution on a bounded number of processors to cope with real-world conditions.","PeriodicalId":226947,"journal":{"name":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel neural learning by iteratively adjusting error thresholds\",\"authors\":\"T. Hong, Jyh-Jong Lee\",\"doi\":\"10.1109/ICPADS.1998.741026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first propose a modified backpropagation learning algorithm that incrementally decreases the error threshold by half in order to process training instances with large weight changes as quickly as possible. This modified backpropagation learning algorithm is then parallelized using the single-channel broadcast communication model to n processors, where n is the number of training instances. Finally, the parallel backpropagation learning algorithm is modified for execution on a bounded number of processors to cope with real-world conditions.\",\"PeriodicalId\":226947,\"journal\":{\"name\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.1998.741026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1998.741026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们首先提出了一种改进的反向传播学习算法,该算法增量地将误差阈值降低一半,以便尽可能快地处理权值变化较大的训练实例。然后使用单通道广播通信模型将这种改进的反向传播学习算法并行化到n个处理器,其中n是训练实例的数量。最后,对并行反向传播学习算法进行了修改,使其能够在有限数量的处理器上执行,以应对现实世界的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel neural learning by iteratively adjusting error thresholds
We first propose a modified backpropagation learning algorithm that incrementally decreases the error threshold by half in order to process training instances with large weight changes as quickly as possible. This modified backpropagation learning algorithm is then parallelized using the single-channel broadcast communication model to n processors, where n is the number of training instances. Finally, the parallel backpropagation learning algorithm is modified for execution on a bounded number of processors to cope with real-world conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object replication using version vector An efficient thread architecture for a distributed shared memory on symmetric multiprocessor clusters A new replication strategy for unforeseeable disconnection under agent-based mobile computing system On reconfiguring query execution plans in distributed object-relational DBMS Reusing MS-Windows software applications under CORBA environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1