冗余实时系统暂态硬件故障后运行状态恢复体系结构

M. Skambraks
{"title":"冗余实时系统暂态硬件故障后运行状态恢复体系结构","authors":"M. Skambraks","doi":"10.1109/ETFA.2006.355368","DOIUrl":null,"url":null,"abstract":"Employing programmable electronic systems (PESs) in safety-critical real-time applications that cannot immediately be transferred to safe states requires especially high degrees of fault-tolerance. Conventionally, this demand is satisfied not only by configuring multiple PESs redundantly, but also by applying redundant processing structures inside each PES. Instead, it is also desirable to provide the capability to rehabilitate a PES's faulty state by copying the internal state from its redundant counterparts at runtime. Thus, redundancy attrition due to transient faults is prevented, since failed channels can be brought back on line. Here, the problems concerned with state restoration at runtime are stated, the advantages and disadvantages of existing techniques are discussed, and a hardware-supported concept is introduced","PeriodicalId":431393,"journal":{"name":"2006 IEEE Conference on Emerging Technologies and Factory Automation","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Architecture for Runtime State Restoration after Transient Hardware-Faults in Redundant Real-Time Systems\",\"authors\":\"M. Skambraks\",\"doi\":\"10.1109/ETFA.2006.355368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing programmable electronic systems (PESs) in safety-critical real-time applications that cannot immediately be transferred to safe states requires especially high degrees of fault-tolerance. Conventionally, this demand is satisfied not only by configuring multiple PESs redundantly, but also by applying redundant processing structures inside each PES. Instead, it is also desirable to provide the capability to rehabilitate a PES's faulty state by copying the internal state from its redundant counterparts at runtime. Thus, redundancy attrition due to transient faults is prevented, since failed channels can be brought back on line. Here, the problems concerned with state restoration at runtime are stated, the advantages and disadvantages of existing techniques are discussed, and a hardware-supported concept is introduced\",\"PeriodicalId\":431393,\"journal\":{\"name\":\"2006 IEEE Conference on Emerging Technologies and Factory Automation\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Emerging Technologies and Factory Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2006.355368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies and Factory Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2006.355368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在不能立即转移到安全状态的安全关键实时应用中使用可编程电子系统(PESs)需要特别高的容错性。通常,满足这种需求不仅需要冗余配置多个pe,还需要在每个pe内部应用冗余处理结构。相反,还需要提供通过在运行时从冗余对应项复制内部状态来恢复PES错误状态的功能。因此,可以防止由于瞬态故障造成的冗余损耗,因为故障通道可以重新联机。本文阐述了运行时状态恢复的相关问题,讨论了现有技术的优缺点,并介绍了硬件支持的概念
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Architecture for Runtime State Restoration after Transient Hardware-Faults in Redundant Real-Time Systems
Employing programmable electronic systems (PESs) in safety-critical real-time applications that cannot immediately be transferred to safe states requires especially high degrees of fault-tolerance. Conventionally, this demand is satisfied not only by configuring multiple PESs redundantly, but also by applying redundant processing structures inside each PES. Instead, it is also desirable to provide the capability to rehabilitate a PES's faulty state by copying the internal state from its redundant counterparts at runtime. Thus, redundancy attrition due to transient faults is prevented, since failed channels can be brought back on line. Here, the problems concerned with state restoration at runtime are stated, the advantages and disadvantages of existing techniques are discussed, and a hardware-supported concept is introduced
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Response Time in Ethernet-based Automation Systems Repeater vs. Bridge-Based Hybrid Wired/Wireless PROFIBUS Networks: a Comparative Performance Analysis Control Architecture for Reconfigurable Manufacturing Systems: the PABADIS'PROMISE approach Memory-Aware Feedback Scheduling of Control Tasks Reconfigurable Logic Control Using IEC 61499 Function Blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1