Yimin Li, Yanfang Chen, Tianru Li, Jingtao Lao, Xuefang Li
{"title":"基于ddpg的自动驾驶路径规划方法","authors":"Yimin Li, Yanfang Chen, Tianru Li, Jingtao Lao, Xuefang Li","doi":"10.1109/DDCLS58216.2023.10166034","DOIUrl":null,"url":null,"abstract":"The present work develops a DDPG-based path planning algorithm that integrates the artificial potential field method into reinforcement learning to learn and generate an obstacle-free path quickly and autonomously. The vehicle kinematic model is adopted to describe the motion of autonomous vehicles, and the potential field function of obstacles, road boundaries as well as reference waypoints are considered to construct rewards of reinforcement learning, which enables the vehicle to realize the tradeoff between avoiding obstacles, preventing driving off the road and following the reference route. In contrast to the existent path planning algorithms, the proposed approach is able to learn autonomously in different driving environments, which is more suitable to autonomous vehicles. Moreover, simulations are provided to further demonstrate the effectiveness and adaptability of the proposed algorithm.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DDPG-Based Path Planning Approach for Autonomous Driving\",\"authors\":\"Yimin Li, Yanfang Chen, Tianru Li, Jingtao Lao, Xuefang Li\",\"doi\":\"10.1109/DDCLS58216.2023.10166034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work develops a DDPG-based path planning algorithm that integrates the artificial potential field method into reinforcement learning to learn and generate an obstacle-free path quickly and autonomously. The vehicle kinematic model is adopted to describe the motion of autonomous vehicles, and the potential field function of obstacles, road boundaries as well as reference waypoints are considered to construct rewards of reinforcement learning, which enables the vehicle to realize the tradeoff between avoiding obstacles, preventing driving off the road and following the reference route. In contrast to the existent path planning algorithms, the proposed approach is able to learn autonomously in different driving environments, which is more suitable to autonomous vehicles. Moreover, simulations are provided to further demonstrate the effectiveness and adaptability of the proposed algorithm.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"376 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10166034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DDPG-Based Path Planning Approach for Autonomous Driving
The present work develops a DDPG-based path planning algorithm that integrates the artificial potential field method into reinforcement learning to learn and generate an obstacle-free path quickly and autonomously. The vehicle kinematic model is adopted to describe the motion of autonomous vehicles, and the potential field function of obstacles, road boundaries as well as reference waypoints are considered to construct rewards of reinforcement learning, which enables the vehicle to realize the tradeoff between avoiding obstacles, preventing driving off the road and following the reference route. In contrast to the existent path planning algorithms, the proposed approach is able to learn autonomously in different driving environments, which is more suitable to autonomous vehicles. Moreover, simulations are provided to further demonstrate the effectiveness and adaptability of the proposed algorithm.