基于模型的早期故障诊断-多步神经预测和多分辨率信号处理

A. Parlos, Kyusung Kim
{"title":"基于模型的早期故障诊断-多步神经预测和多分辨率信号处理","authors":"A. Parlos, Kyusung Kim","doi":"10.1109/IJCNN.2002.1005490","DOIUrl":null,"url":null,"abstract":"Timely detection and diagnosis of incipient faults is desirable for online condition assessment purposes. In this paper, a model-based fault diagnosis system is developed for induction motors, using recurrent neural networks for multistep transient response prediction and multiresolution signal processing for nonstationary signal feature extraction. The proposed diagnosis system uses only measured motor terminal currents and voltages, and motor speed. The effectiveness of the diagnosis system is demonstrated through staged motor faults of electrical and mechanical origin. Scaling of the diagnosis system to machines with different power ratings is demonstrated with data from 2.2 kW, 373 kW and 597 kW induction motors.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Model-based incipient fault diagnosis - multi-step neuro-predictors and multiresolution signal processing\",\"authors\":\"A. Parlos, Kyusung Kim\",\"doi\":\"10.1109/IJCNN.2002.1005490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timely detection and diagnosis of incipient faults is desirable for online condition assessment purposes. In this paper, a model-based fault diagnosis system is developed for induction motors, using recurrent neural networks for multistep transient response prediction and multiresolution signal processing for nonstationary signal feature extraction. The proposed diagnosis system uses only measured motor terminal currents and voltages, and motor speed. The effectiveness of the diagnosis system is demonstrated through staged motor faults of electrical and mechanical origin. Scaling of the diagnosis system to machines with different power ratings is demonstrated with data from 2.2 kW, 373 kW and 597 kW induction motors.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"295 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1005490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

及时发现和诊断早期故障是在线状态评估的需要。本文开发了一种基于模型的异步电动机故障诊断系统,利用递归神经网络进行多步暂态响应预测,利用多分辨率信号处理进行非平稳信号特征提取。所提出的诊断系统仅使用测量的电机端子电流和电压以及电机转速。通过电机电气故障和机械故障的分阶段分析,验证了该诊断系统的有效性。通过2.2 kW, 373 kW和597 kW感应电机的数据演示了诊断系统对不同额定功率机器的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-based incipient fault diagnosis - multi-step neuro-predictors and multiresolution signal processing
Timely detection and diagnosis of incipient faults is desirable for online condition assessment purposes. In this paper, a model-based fault diagnosis system is developed for induction motors, using recurrent neural networks for multistep transient response prediction and multiresolution signal processing for nonstationary signal feature extraction. The proposed diagnosis system uses only measured motor terminal currents and voltages, and motor speed. The effectiveness of the diagnosis system is demonstrated through staged motor faults of electrical and mechanical origin. Scaling of the diagnosis system to machines with different power ratings is demonstrated with data from 2.2 kW, 373 kW and 597 kW induction motors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1